Festina lente:1 EFT constraints from charged black hole evaporation in de Sitter

  • Miguel MonteroEmail author
  • Thomas Van Riet
  • Gerben Venken
Open Access
Regular Article - Theoretical Physics


In the Swampland philosophy of constraining EFTs from black hole mechanics we study charged black hole evaporation in de Sitter space. We establish how the black hole mass and charge change over time due to both Hawking radiation and Schwinger pair production as a function of the masses and charges of the elementary particles in the theory. We find a lower bound on the mass of charged particles by demanding that large charged black holes evaporate back to empty de Sitter space, in accordance with the thermal picture of the de Sitter static patch. This bound is satisfied by the charged spectrum of the Standard Model. We discuss phenomenological implications for the cosmological hierarchy problem and inflation. Enforcing the thermal picture also leads to a heuristic remnant argument for the Weak Gravity Conjecture in de Sitter space, where the usual kinematic arguments do not work. We also comment on a possible relation between WGC and universal bounds on equilibration times. All in all, charged black holes in de Sitter should make haste to evaporate, but they should not rush it.2


Black Holes Black Holes in String Theory Classical Theories of Gravity 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    H. Ooguri and C. Vafa, On the geometry of the string landscape and the swampland, Nucl. Phys.B 766 (2007) 21 [hep-th/0605264] [INSPIRE].
  2. [2]
    U. Schreiber, Swampland in nlab, Scholar
  3. [3]
    T.D. Brennan, F. Carta and C. Vafa, The string landscape, the swampland and the missing corner, PoS(TASI2017)015 [arXiv:1711.00864] [INSPIRE].
  4. [4]
    E. Palti, The Swampland: Introduction and Review, Fortsch. Phys.67 (2019) 1900037 [arXiv:1903.06239] [INSPIRE].
  5. [5]
    T. Banks and L.J. Dixon, Constraints on string vacua with space-time supersymmetry, Nucl. Phys.B 307 (1988) 93 [INSPIRE].
  6. [6]
    L.F. Abbott and M.B. Wise, Wormholes and global symmetries, Nucl. Phys.B 325 (1989) 687 [INSPIRE].
  7. [7]
    S.R. Coleman and K.-M. Lee, Wormholes made without massless matter fields, Nucl. Phys.B 329 (1990) 387 [INSPIRE].
  8. [8]
    R. Kallosh, A.D. Linde, D.A. Linde and L. Susskind, Gravity and global symmetries, Phys. Rev.D 52 (1995) 912 [hep-th/9502069] [INSPIRE].
  9. [9]
    T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev.D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].
  10. [10]
    L. Susskind, Trouble for remnants, hep-th/9501106 [INSPIRE].
  11. [11]
    C. Beem et al., The \( \mathcal{N} \) = 2 superconformal bootstrap, JHEP03 (2016) 183 [arXiv:1412.7541] [INSPIRE].
  12. [12]
    D. Harlow and H. Ooguri, Constraints on symmetries from holography, Phys. Rev. Lett.122 (2019) 191601 [arXiv:1810.05337] [INSPIRE].
  13. [13]
    D. Harlow and H. Ooguri, Symmetries in quantum field theory and quantum gravity, arXiv:1810.05338 [INSPIRE].
  14. [14]
    S. Fichet and P. Saraswat, Approximate symmetries and gravity, arXiv:1909.02002 [INSPIRE].
  15. [15]
    N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP06 (2007) 060 [hep-th/0601001] [INSPIRE].
  16. [16]
    C. Cheung and G.N. Remmen, Naturalness and the weak gravity conjecture, Phys. Rev. Lett.113 (2014) 051601 [arXiv:1402.2287] [INSPIRE].
  17. [17]
    B. Heidenreich, M. Reece and T. Rudelius, Evidence for a sublattice weak gravity conjecture, JHEP08 (2017) 025 [arXiv:1606.08437] [INSPIRE].
  18. [18]
    S. Andriolo, D. Junghans, T. Noumi and G. Shiu, A tower weak gravity conjecture from infrared consistency, Fortsch. Phys.66 (2018) 1800020 [arXiv:1802.04287] [INSPIRE].
  19. [19]
    D. Klaewer and E. Palti, Super-Planckian spatial field variations and quantum gravity, JHEP01 (2017) 088 [arXiv:1610.00010] [INSPIRE].
  20. [20]
    E. Palti, The weak gravity conjecture and scalar fields, JHEP08 (2017) 034 [arXiv:1705.04328] [INSPIRE].
  21. [21]
    D. Lüst and E. Palti, Scalar fields, hierarchical UV/IR mixing and the weak gravity conjecture, JHEP02 (2018) 040 [arXiv:1709.01790] [INSPIRE].
  22. [22]
    M. Montero, G. Shiu and P. Soler, The weak gravity conjecture in three dimensions, JHEP10 (2016) 159 [arXiv:1606.08438] [INSPIRE].
  23. [23]
    M. Reece, Photon masses in the landscape and the swampland, JHEP07 (2019) 181 [arXiv:1808.09966] [INSPIRE].
  24. [24]
    S.-J. Lee, W. Lerche and T. Weigand, Tensionless strings and the weak gravity conjecture, JHEP10 (2018) 164 [arXiv:1808.05958] [INSPIRE].
  25. [25]
    S.-J. Lee, W. Lerche and T. Weigand, A stringy test of the scalar weak gravity conjecture, Nucl. Phys.B 938 (2019) 321 [arXiv:1810.05169] [INSPIRE].
  26. [26]
    Q. Bonnefoy, E. Dudas and S. Lüst, On the weak gravity conjecture in string theory with broken supersymmetry, Nucl. Phys.B 947 (2019) 114738 [arXiv:1811.11199] [INSPIRE].
  27. [27]
    D. Klaewer, D. Lüst and E. Palti, A spin-2 conjecture on the swampland, Fortsch. Phys.67 (2019) 1800102 [arXiv:1811.07908] [INSPIRE].
  28. [28]
    Y. Hamada, T. Noumi and G. Shiu, Weak gravity conjecture from unitarity and causality, Phys. Rev. Lett.123 (2019) 051601 [arXiv:1810.03637] [INSPIRE].
  29. [29]
    C. De Rham, L. Heisenberg and A.J. Tolley, Spin-2 fields and the weak gravity conjecture, Phys. Rev.D 100 (2019) 104033 [arXiv:1812.01012] [INSPIRE].
  30. [30]
    A. Hebecker, S. Leonhardt, J. Moritz and A. Westphal, Thraxions: ultralight throat axions, JHEP04 (2019) 158 [arXiv:1812.03999] [INSPIRE].
  31. [31]
    N. Craig, I. Garcia Garcia and S. Koren, Discrete gauge symmetries and the weak gravity conjecture, JHEP05 (2019) 140 [arXiv:1812.08181] [INSPIRE].
  32. [32]
    B. Bellazzini, M. Lewandowski and J. Serra, Amplitudes’ positivity, weak gravity conjecture and modified gravity, Phys. Rev. Lett.123 (2019) 251103 [arXiv:1902.03250] [INSPIRE].
  33. [33]
    A. Pal and Q. Shafi, Supersymmetric SU(5) × U (1)χand the weak gravity conjecture, Phys. Rev.D 100 (2019) 043526 [arXiv:1903.05703] [INSPIRE].
  34. [34]
    G.J. Loges, T. Noumi and G. Shiu, Thermodynamics of 4D dilatonic black holes and the weak gravity conjecture, arXiv:1909.01352 [INSPIRE].
  35. [35]
    C. Cheung, J. Liu and G.N. Remmen, Entropy bounds on effective field theory from rotating dyonic black holes, Phys. Rev.D 100 (2019) 046003 [arXiv:1903.09156] [INSPIRE].
  36. [36]
    S. Brahma and M.W. Hossain, Relating the scalar weak gravity conjecture and the swampland distance conjecture for an accelerating universe, Phys. Rev.D 100 (2019) 086017 [arXiv:1904.05810] [INSPIRE].
  37. [37]
    N. Craig, I. Garcia Garcia and S. Koren, The weak scale from weak gravity, JHEP09 (2019) 081 [arXiv:1904.08426] [INSPIRE].
  38. [38]
    J. Kaplan and S. Kundu, A species or weak-gravity bound for large N gauge theories coupled to gravity, JHEP11 (2019) 142 [arXiv:1904.09294] [INSPIRE].
  39. [39]
    S. Shirai and M. Yamazaki, Is gravity the weakest force?, arXiv:1904.10577 [INSPIRE].
  40. [40]
    M. Mirbabayi, A weak gravity theorem, arXiv:1905.02736 [INSPIRE].
  41. [41]
    P. Nath and M. Piskunov, Enhancement of the axion decay constant in inflation and the weak gravity conjecture, arXiv:1906.02764 [INSPIRE].
  42. [42]
    A.M. Charles, The weak gravity conjecture, RG flows and supersymmetry, arXiv:1906.07734 [INSPIRE].
  43. [43]
    E. Gonzalo and L.E. Ibàñez, A strong scalar weak gravity conjecture and some implications, JHEP08 (2019) 118 [arXiv:1903.08878] [INSPIRE].
  44. [44]
    S.-J. Lee, W. Lerche and T. Weigand, Modular fluxes, elliptic genera and weak gravity conjectures in four dimensions, JHEP08 (2019) 104 [arXiv:1901.08065] [INSPIRE].
  45. [45]
    S.-J. Lee, W. Lerche and T. Weigand, Emergent strings, duality and weak coupling limits for two-form fields, arXiv:1904.06344 [INSPIRE].
  46. [46]
    L. Aalsma, A. Cole and G. Shiu, Weak gravity conjecture, black hole entropy and modular invariance, arXiv:1905.06956 [INSPIRE].
  47. [47]
    B. Heidenreich, M. Reece and T. Rudelius, Repulsive forces and the weak gravity conjecture, JHEP10 (2019) 055 [arXiv:1906.02206] [INSPIRE].
  48. [48]
    Y.C. Ong and Y. Yao, Charged particle production rate from cosmic censorship in dilaton black hole spacetimes, JHEP10 (2019) 129 [arXiv:1907.07490] [INSPIRE].
  49. [49]
    S. de Alwis et al., Asymptotic safety, string theory and the weak gravity conjecture, Phys. Lett.B 798 (2019) 134991 [arXiv:1907.07894] [INSPIRE].
  50. [50]
    G.N. Remmen and N.L. Rodd, Consistency of the Standard Model Effective Field Theory, JHEP12 (2019) 032 [arXiv:1908.09845] [INSPIRE].
  51. [51]
    C.R.T. Jones and B. McPeak, The black hole weak gravity conjecture with multiple charges, arXiv:1908.10452 [INSPIRE].
  52. [52]
    G. Goon and R. Penco, A universal relation between corrections to entropy and extremality, arXiv:1909.05254 [INSPIRE].
  53. [53]
    P.A. Cano, T. Ortín and P.F. Ramirez, On the extremality bound of stringy black holes, arXiv:1909.08530 [INSPIRE].
  54. [54]
    Y.C. Ong, The charge of electron, weak gravity conjecture and black hole evolution, arXiv:1909.09977 [INSPIRE].
  55. [55]
    B. Heidenreich, M. Reece and T. Rudelius, The weak gravity conjecture and emergence from an ultraviolet cutoff, Eur. Phys. J.C 78 (2018) 337 [arXiv:1712.01868] [INSPIRE].
  56. [56]
    T.W. Grimm, E. Palti and I. Valenzuela, Infinite distances in field space and massless towers of states, JHEP08 (2018) 143 [arXiv:1802.08264] [INSPIRE].
  57. [57]
    B. Heidenreich, M. Reece and T. Rudelius, Emergence of weak coupling at large distance in quantum gravity, Phys. Rev. Lett.121 (2018) 051601 [arXiv:1802.08698] [INSPIRE].
  58. [58]
    T.W. Grimm, C. Li and E. Palti, Infinite distance networks in field space and charge orbits, JHEP03 (2019) 016 [arXiv:1811.02571] [INSPIRE].
  59. [59]
    W.-C. Lin and W.H. Kinney, Consistency of tachyacoustic cosmology with de Sitter swampland conjectures, JCAP10 (2019) 038 [arXiv:1812.04447] [INSPIRE].
  60. [60]
    G. Buratti, J. Calderón and A.M. Uranga, Transplanckian axion monodromy!?, JHEP05 (2019) 176 [arXiv:1812.05016] [INSPIRE].
  61. [61]
    A. Hebecker, D. Junghans and A. Schachner, Large field ranges from aligned and misaligned winding, JHEP03 (2019) 192 [arXiv:1812.05626] [INSPIRE].
  62. [62]
    E. Gonzalo, L.E. Ibàñez and A.M. Uranga, Modular symmetries and the swampland conjectures, JHEP05 (2019) 105 [arXiv:1812.06520] [INSPIRE].
  63. [63]
    M. Scalisi and I. Valenzuela, Swampland distance conjecture, inflation and α-attractors, JHEP08 (2019) 160 [arXiv:1812.07558] [INSPIRE].
  64. [64]
    F. Marchesano and M. Wiesner, Instantons and infinite distances, JHEP08 (2019) 088 [arXiv:1904.04848] [INSPIRE].
  65. [65]
    A. Kehagias, D. Lüst and S. Lüst, Swampland, gradient flow and infinite distance, arXiv:1910.00453 [INSPIRE].
  66. [66]
    P. Corvilain, T.W. Grimm and I. Valenzuela, The swampland distance conjecture for Kähler moduli, JHEP08 (2019) 075 [arXiv:1812.07548] [INSPIRE].
  67. [67]
    A. Font, A. Herráez and L.E. Ibàñez, The swampland distance conjecture and towers of tensionless branes, JHEP08 (2019) 044 [arXiv:1904.05379] [INSPIRE].
  68. [68]
    T.W. Grimm and D. Van De Heisteeg, Infinite distances and the axion weak gravity conjecture, arXiv:1905.00901 [INSPIRE].
  69. [69]
    F.F. Gautason, V. Van Hemelryck and T. Van Riet, The tension between 10D supergravity and dS uplifts, Fortsch. Phys.67 (2019) 1800091 [arXiv:1810.08518] [INSPIRE].
  70. [70]
    D. Lüst, E. Palti and C. Vafa, AdS and the swampland, Phys. Lett.B 797 (2019) 134867 [arXiv:1906.05225] [INSPIRE].
  71. [71]
    G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, de Sitter space and the swampland, arXiv:1806.08362 [INSPIRE].
  72. [72]
    P. Agrawal, G. Obied, P.J. Steinhardt and C. Vafa, On the cosmological implications of the string swampland, Phys. Lett.B 784 (2018) 271 [arXiv:1806.09718] [INSPIRE].
  73. [73]
    W.H. Kinney, Eternal inflation and the refined swampland conjecture, Phys. Rev. Lett.122 (2019) 081302 [arXiv:1811.11698] [INSPIRE].
  74. [74]
    E. Kiritsis and A. Tsouros, De Sitter versus Anti de Sitter flows and the (super)gravity landscape, arXiv:1901.04546 [INSPIRE].
  75. [75]
    G. Goswami, Enhancement of axion decay constants in type IIA theory?, Phys. Rev.D 100 (2019) 066009 [arXiv:1812.11909] [INSPIRE].
  76. [76]
    N. Kaloper, Dark energy, H 0and weak gravity conjecture, Int. J. Mod. Phys.D 28 (2019) 1944017 [arXiv:1903.11676] [INSPIRE].
  77. [77]
    C. Gómez, Gravity as universal UV completion: towards a unified view of swampland conjectures, arXiv:1907.13386 [INSPIRE].
  78. [78]
    A. Bedroya and C. Vafa, Trans-Planckian censorship and the swampland, arXiv:1909.11063 [INSPIRE].
  79. [79]
    M. Montero, A holographic derivation of the weak gravity conjecture, JHEP03 (2019) 157 [arXiv:1812.03978] [INSPIRE].
  80. [80]
    S. Sethi, Supersymmetry breaking by fluxes, JHEP10 (2018) 022 [arXiv:1709.03554] [INSPIRE].
  81. [81]
    U.H. Danielsson and T. Van Riet, What if string theory has no de Sitter vacua?, Int. J. Mod. Phys.D 27 (2018) 1830007 [arXiv:1804.01120] [INSPIRE].
  82. [82]
    T. Banks, The top 10500reasons not to believe in the landscape, arXiv:1208.5715 [INSPIRE].
  83. [83]
    T. Crisford and J.E. Santos, Violating the weak cosmic censorship conjecture in four-dimensional Anti–de Sitter space, Phys. Rev. Lett.118 (2017) 181101 [arXiv:1702.05490] [INSPIRE].
  84. [84]
    T. Crisford, G.T. Horowitz and J.E. Santos, Testing the weak gravity — Cosmic censorship connection, Phys. Rev.D 97 (2018) 066005 [arXiv:1709.07880] [INSPIRE].
  85. [85]
    G.T. Horowitz and J.E. Santos, Further evidence for the weak gravity — Cosmic censorship connection, JHEP06 (2019) 122 [arXiv:1901.11096] [INSPIRE].
  86. [86]
    R. Bousso and S.W. Hawking, Pair creation of black holes during inflation, Phys. Rev.D 54 (1996) 6312 [gr-qc/9606052] [INSPIRE].
  87. [87]
    R. Bousso, Charged Nariai black holes with a dilaton, Phys. Rev.D 55 (1997) 3614 [gr-qc/9608053] [INSPIRE].
  88. [88]
    R. Bousso and S.W. Hawking, (Anti)evaporation of Schwarzschild-de Sitter black holes, Phys. Rev.D 57 (1998) 2436 [hep-th/9709224] [INSPIRE].
  89. [89]
    R. Bousso, Proliferation of de Sitter space, Phys. Rev.D 58 (1998) 083511 [hep-th/9805081] [INSPIRE].
  90. [90]
    R. Bousso, Quantum global structure of de Sitter space, Phys. Rev.D 60 (1999) 063503 [hep-th/9902183] [INSPIRE].
  91. [91]
    R. Bousso, Adventures in de Sitter space, in the proceedings of The future of theoretical physics and cosmology: Celebrating Stephen Hawking’s 60thbirthday, January 7–10, Cambridge, U.K. (2002), hep-th/0205177 [INSPIRE].
  92. [92]
    F. Belgiorno and S.L. Cacciatori, Massive Dirac particles on the background of charged de-Sitter black hole manifolds, Phys. Rev.D 79 (2009) 124024 [arXiv:0810.1642] [INSPIRE].
  93. [93]
    F. Belgiorno, S.L. Cacciatori and F. Dalla Piazza, Pair-production of charged Dirac particles on charged Nariai and ultracold black hole manifolds, JHEP08 (2009) 028 [arXiv:0906.1520] [INSPIRE].
  94. [94]
    F. Belgiorno, S.L. Cacciatori and F. Dalla Piazza, Quantum instability for charged scalar particles on charged Nariai and ultracold black hole manifolds, Class. Quant. Grav.27 (2010) 055011 [arXiv:0909.1454] [INSPIRE].
  95. [95]
    S.P. Kim, Schwinger effect in (A)ds and charged black hole, in the proceedings of the 12thInternational Conference on Gravitation, Astrophysics and Cosmology (ICGAC-12), June 28–July 5, Moscow, Russia (2015), arXiv:1509.05532 [INSPIRE].
  96. [96]
    F. Belgiorno, S.L. Cacciatori and F. Dalla Piazza, Tunneling method for Hawking radiation in the Nariai case, Gen. Rel. Grav.49 (2017) 109 [arXiv:1602.09047] [INSPIRE].
  97. [97]
    W.A. Hiscock and L.D. Weems, Evolution of charged evaporating black holes, Phys. Rev.D 41 (1990) 1142 [INSPIRE].
  98. [98]
    O.J.C. Dias, H.S. Reall and J.E. Santos, Strong cosmic censorship: taking the rough with the smooth, JHEP10 (2018) 001 [arXiv:1808.02895] [INSPIRE].
  99. [99]
    D. Anninos, De Sitter musings, Int. J. Mod. Phys.A 27 (2012) 1230013 [arXiv:1205.3855] [INSPIRE].
  100. [100]
    J. Dinsmore et al. Schottky anomaly of de Sitter black holes, arXiv:1907.00248 [INSPIRE].
  101. [101]
    C.V. Johnson, De Sitter black holes, Schottky peaks and continuous heat engines, arXiv:1907.05883 [INSPIRE].
  102. [102]
    H. Nariai, On some static solutions of Einstein’s gravitational field equations in a spherically symmetric case, Gen. Rel. Grav.31 (1999) 951.Google Scholar
  103. [103]
    L.J. Romans, Supersymmetric, cold and lukewarm black holes in cosmological Einstein-Maxwell theory, Nucl. Phys.B 383 (1992) 395 [hep-th/9203018] [INSPIRE].
  104. [104]
    O.J.C. Dias, H.S. Reall and J.E. Santos, Strong cosmic censorship for charged de Sitter black holes with a charged scalar field, Class. Quant. Grav.36 (2019) 045005 [arXiv:1808.04832] [INSPIRE].
  105. [105]
    G.W. Gibbons, Vacuum polarization and the spontaneous loss of charge by black holes, Commun. Math. Phys.44 (1975) 245 [INSPIRE].
  106. [106]
    J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev.82 (1951) 664 [INSPIRE].
  107. [107]
    J. Kevorkian and J. Cole, Multiple scale and singular perturbation methods, Applied Mathematical Sciences, Springer, Germany (1996).Google Scholar
  108. [108]
    B. Pioline and J. Troost, Schwinger pair production in AdS 2, JHEP03 (2005) 043 [hep-th/0501169] [INSPIRE].
  109. [109]
    T.D. Cohen and D.A. McGady, The Schwinger mechanism revisited, Phys. Rev.D 78 (2008) 036008 [arXiv:0807.1117] [INSPIRE].
  110. [110]
    A.I. Nikishov, Barrier scattering in field theory removal of klein paradox, Nucl. Phys.B 21 (1970) 346 [INSPIRE].
  111. [111]
    C. Itzykson and J. Zuber, Quantum field theory, Dover Books on Physics, Dover Publications, U.S.A. (2012).Google Scholar
  112. [112]
    J.A. Harvey, TASI 2003 lectures on anomalies, hep-th/0509097 [INSPIRE].
  113. [113]
    R. Bousso and S.W. Hawking, Primordial black holes: pair creation, Lorentzian condition and evaporation, Int. J. Theor. Phys.38 (1999) 1227 [INSPIRE].
  114. [114]
    M.B. Fröb et al., Schwinger effect in de Sitter space, JCAP04 (2014) 009 [arXiv:1401.4137] [INSPIRE].
  115. [115]
    D. Anninos and T. Anous, A de Sitter Hoedown, JHEP08 (2010) 131 [arXiv:1002.1717] [INSPIRE].
  116. [116]
    T. Banks, De Sitter space and the swampland, talk given at Navigating the Swampland, September 25–27, IFT, Madrid Spain (2019).Google Scholar
  117. [117]
    T. Banks, to appear.Google Scholar
  118. [118]
    J.C. Niemeyer and R. Bousso, The nonlinear evolution of de Sitter space instabilities, Phys. Rev.D 62 (2000) 023503 [gr-qc/0004004] [INSPIRE].
  119. [119]
    L. Aalsma, M. Parikh and J.P. Van Der Schaar, Back(reaction) to the future in the Unruh-de Sitter state, JHEP11 (2019) 136 [arXiv:1905.02714] [INSPIRE].
  120. [120]
    T. Banks, Cosmological breaking of supersymmetry?, Int. J. Mod. Phys.A 16 (2001) 910 [hep-th/0007146] [INSPIRE].
  121. [121]
    T. Banks, Some thoughts on the quantum theory of de Sitter space, in the proceedings of Cosmic inflation, March 22–25, Davis, U.S.A. (2003), astro-ph/0305037 [INSPIRE].
  122. [122]
    T. Banks, Some thoughts on the quantum theory of stable de Sitter space, hep-th/0503066 [INSPIRE].
  123. [123]
    E. Witten, Quantum gravity in de Sitter space, in the proceedings of Strings 2001: International Conference, January 5–10, Mumbai, India (2001), hep-th/0106109 [INSPIRE].
  124. [124]
    L. Ibàñez and A. Uranga, String theory and particle physics: an introduction to string phenomenology, Cambridge University Press, Cambridge U.K. (2012).Google Scholar
  125. [125]
    S.S. Gubser, Curvature singularities: the good, the bad and the naked, Adv. Theor. Math. Phys.4 (2000) 679 [hep-th/0002160] [INSPIRE].
  126. [126]
    R.M. Wald, Gravitational collapse and cosmic censorship, in Black Holes, Gravitational Radiation and the Universe: Essays in Honor of C.V. Vishveshwara, B. Iyer and B. Bhawal eds., Springer, Germany (1997), gr-qc/9710068.
  127. [127]
    M. Spradlin, A. Strominger and A. Volovich, Les Houches lectures on de Sitter space, in the proceedings of Unity from duality: Gravity, gauge theory and strings, Euro Summer School, 76thsession, July 30–August 31, Les Houches, France (2001), hep-th/0110007 [INSPIRE].
  128. [128]
    P.H. Ginsparg and M.J. Perry, Semiclassical perdurance of de Sitter space, Nucl. Phys.B 222 (1983) 245 [INSPIRE].
  129. [129]
    O.J.C. Dias and J.P.S. Lemos, Pair creation of higher dimensional black holes on a de Sitter background, Phys. Rev.D 70 (2004) 124023 [hep-th/0410279] [INSPIRE].
  130. [130]
    D. Anninos, T. Hartman and A. Strominger, Higher spin realization of the dS/CFT correspondence, Class. Quant. Grav.34 (2017) 015009 [arXiv:1108.5735] [INSPIRE].
  131. [131]
    G.F. Giudice, Naturally speaking: the naturalness criterion and physics at the LHC, arXiv:0801.2562 [INSPIRE].
  132. [132]
    C. Csáki and P. Tanedo, Beyond the standard model, in the proceedings of the 2013 European School of High-Energy Physics (ESHEP 2013), June 5–18, Paradfurdo, Hungary (2013), arXiv:1602.04228 [INSPIRE].
  133. [133]
    G.F. Giudice, The dawn of the post-naturalness era, in From my vast repertoire …: Guido Altarelli’s legacy, A. Levy et al. eds., World Scientific, Singapore (2019), arXiv:1710.07663 [INSPIRE].
  134. [134]
    L.E. Ibàñez, V. Martin-Lozano and I. Valenzuela, Constraining the EW hierarchy from the weak gravity conjecture, arXiv:1707.05811 [INSPIRE].
  135. [135]
    S. Davidson, S. Hannestad and G. Raffelt, Updated bounds on millicharged particles, JHEP05 (2000) 003 [hep-ph/0001179] [INSPIRE].
  136. [136]
    J. Preskill, Cosmological production of superheavy magnetic monopoles, Phys. Rev. Lett.43 (1979) 1365 [INSPIRE].
  137. [137]
    Ya.B. Zeldovich and M.Yu. Khlopov, On the concentration of relic magnetic monopoles in the universe, Phys. Lett.B 79 (1978) 239.Google Scholar
  138. [138]
    X. Chen, Y. Wang and Z.-Z. Xianyu, Loop corrections to standard model fields in inflation, JHEP08 (2016) 051 [arXiv:1604.07841] [INSPIRE].
  139. [139]
    D. Baumann, Inflation, in the proceedings of Physics of the large and the small (TASI 09), June 1–26, Boulder, Colorado, U.S.A. (2009), arXiv:0907.5424 [INSPIRE].
  140. [140]
    A. Maleknejad, M.M. Sheikh-Jabbari and J. Soda, Gauge fields and inflation, Phys. Rept.528 (2013) 161 [arXiv:1212.2921] [INSPIRE].
  141. [141]
    R.K. Jain and M.S. Sloth, On the non-Gaussian correlation of the primordial curvature perturbation with vector fields, JCAP02 (2013) 003 [arXiv:1210.3461] [INSPIRE].
  142. [142]
    N. Barnaby, R. Namba and M. Peloso, Observable non-Gaussianity from gauge field production in slow roll inflation and a challenging connection with magnetogenesis, Phys. Rev.D 85 (2012) 123523 [arXiv:1202.1469] [INSPIRE].
  143. [143]
    J. Rubio, Higgs inflation, Front. Astron. Space Sci.5 (2019) 50 [arXiv:1807.02376]. [144] P. Draper and S. Farkas, Gravitational instabilities and censorship of large scalar field excursions, JHEP05 (2019) 158 [arXiv:1901.00515] [INSPIRE].
  144. [145]
    M. Ragsdale and D. Singleton, Schwinger effect for non-Abelian gauge bosons, J. Phys. Conf. Ser.883 (2017) 012014 [arXiv:1708.09753] [INSPIRE].
  145. [146]
    F. Denef and S.A. Hartnoll, Landscape of superconducting membranes, Phys. Rev.D 79 (2009) 126008 [arXiv:0901.1160] [INSPIRE].
  146. [147]
    M. Montero, Are tiny gauge couplings out of the Swampland?, JHEP10 (2017) 208 [arXiv:1708.02249] [INSPIRE].
  147. [148]
    C. Gogolin and J. Eisert, Equilibration, thermalisation and the emergence of statistical mechanics in closed quantum systems, Rept. Prog. Phys.79 (2016) 056001 [arXiv:1503.07538] [INSPIRE].
  148. [149]
    K. Jensen, Chaos in AdS 2holography, Phys. Rev. Lett.117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].
  149. [150]
    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
  150. [151]
    J. Cotler, K. Jensen and A. Maloney, Low-dimensional de Sitter quantum gravity, arXiv:1905.03780 [INSPIRE].
  151. [152]
    J. Maldacena, G.J. Turiaci and Z. Yang, Two dimensional Nearly de Sitter gravity, arXiv:1904.01911 [INSPIRE].
  152. [153]
    D. Anninos, D.M. Hofman and J. Kruthoff, Charged quantum fields in AdS 2, SciPost Phys.7 (2019) 054 [arXiv:1906.00924] [INSPIRE].
  153. [154]
    P. Saad, S.H. Shenker and D. Stanford, JT gravity as a matrix integral, arXiv:1903.11115 [INSPIRE].
  154. [155]
    W. Rudin, Real and complex analysis, Mathematics series, McGraw-Hill, U.S.A. (1987).Google Scholar
  155. [156]
    S.W. Hawking and G.F.R. Ellis, The large scale structure of space-time, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2011).Google Scholar
  156. [157]
    J.M.M. Senovilla and D. Garfinkle, The 1965 Penrose singularity theorem, Class. Quant. Grav.32 (2015) 124008 [arXiv:1410.5226] [INSPIRE].
  157. [158]
    G.F.R. Ellis, Closed trapped surfaces in cosmology, Gen. Rel. Grav.35 (2003) 1309 [gr-qc/0304039] [INSPIRE].
  158. [159]
    P. Candelas, Vacuum polarization in Schwarzschild space-time, Phys. Rev.D 21 (1980) 2185 [INSPIRE].

Copyright information

© The Author(s) 2020

Authors and Affiliations

  • Miguel Montero
    • 1
    • 2
    Email author
  • Thomas Van Riet
    • 1
  • Gerben Venken
    • 1
  1. 1.Institute of Theoretical PhysicsKU LeuvenLeuvenBelgium
  2. 2.Jefferson Physical LaboratoryHarvard UniversityCambridgeUSA

Personalised recommendations