Advertisement

AdS4/CFT3 from weak to strong string coupling

  • Damon J. Binder
  • Shai M. ChesterEmail author
  • Silviu S. Pufu
Open Access
Regular Article - Theoretical Physics

Abstract

We consider the four-point function of operators in the stress tensor multiplet of the U(N)k× U(N)−k ABJM theory, in the limit where N is taken to infinity while N/k5 is held fixed. In this limit, ABJM theory is holographically dual to type IIA string theory on AdS4× ℂℙ3 at finite string coupling gs (N/k5)1/4. While at leading order in 1/N, the stress tensor multiplet four-point function can be computed from type IIA supergravity, in this work we focus on the first subleading correction, which comes from tree level Witten diagrams with an R4 interaction vertex. Using superconformal Ward identities, bulk locality, and the mass deformed sphere free energy previously computed to all orders in 1/N from supersymmetric localization, we determine this R4 correction as a function of N/k5. Taking its flat space limit, we recover the known R4 contribution to the type IIA S-matrix and reproduce the fact that it only receives perturbative contributions in gs from genus zero and genus one string worldsheets. This is the first check of AdS/CFT at finite gs for local operators. Our result for the four-point correlator interpolates between the large N, large ’t Hooft coupling limit and the large N finite k limit. From the bulk perspective, this is an interpolation between type IIA string theory on AdS4× ℂℙ3 at small string coupling and M-theory on AdS4× S7/k.

Keywords

1/N Expansion AdS-CFT Correspondence Conformal Field Theory M-Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  3. [3]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
  4. [4]
    E. D’Hoker, D.Z. Freedman and W. Skiba, Field theory tests for correlators in the AdS/CFT correspondence, Phys. Rev.D 59 (1999) 045008 [hep-th/9807098] [INSPIRE].
  5. [5]
    D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Comments on 4 point functions in the CFT/AdS correspondence, Phys. Lett.B 452 (1999) 61 [hep-th/9808006] [INSPIRE].
  6. [6]
    E. D’Hoker and D.Z. Freedman, Gauge boson exchange in AdS d+1 , Nucl. Phys.B 544 (1999) 612 [hep-th/9809179] [INSPIRE].
  7. [7]
    E. D’Hoker and D.Z. Freedman, General scalar exchange in AdS d+1 , Nucl. Phys.B 550 (1999) 261 [hep-th/9811257] [INSPIRE].
  8. [8]
    E. D’Hoker, D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Graviton and gauge boson propagators in AdS(d+1), Nucl. Phys.B 562 (1999) 330 [hep-th/9902042] [INSPIRE].
  9. [9]
    E. D’Hoker, D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Graviton exchange and complete four point functions in the AdS/CFT correspondence, Nucl. Phys.B 562 (1999) 353 [hep-th/9903196] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    E. D’Hoker, D.Z. Freedman and L. Rastelli, AdS/CFT four point functions: How to succeed at z integrals without really trying, Nucl. Phys.B 562 (1999) 395 [hep-th/9905049] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    E. D’Hoker, D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Extremal correlators in the AdS/CFT correspondence, hep-th/9908160 [INSPIRE].
  12. [12]
    D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the C F Td /AdSd+1 correspondence, Nucl. Phys.B 546 (1999) 96 [hep-th/9804058] [INSPIRE].
  13. [13]
    S. de Haro, A. Sinkovics and K. Skenderis, On a supersymmetric completion of the R 4term in IIB supergravity, Phys. Rev.D 67 (2003) 084010 [hep-th/0210080] [INSPIRE].
  14. [14]
    G. Policastro and D. Tsimpis, R 4, purified, Class. Quant. Grav.23 (2006) 4753 [hep-th/0603165] [INSPIRE].
  15. [15]
    M.F. Paulos, Higher derivative terms including the Ramond-Ramond five-form, JHEP10 (2008) 047 [arXiv:0804.0763] [INSPIRE].
  16. [16]
    J.T. Liu and R. Minasian, Higher-derivative couplings in string theory: dualities and the B-field, Nucl. Phys.B 874 (2013) 413 [arXiv:1304.3137] [INSPIRE].
  17. [17]
    V. Gon¸calves, Four point function of N = 4 stress-tensor multiplet at strong coupling, JHEP04 (2015) 150 [arXiv:1411.1675] [INSPIRE].
  18. [18]
    L. Rastelli and X. Zhou, Holographic Four-Point Functions in the (2, 0) Theory, JHEP06 (2018) 087 [arXiv:1712.02788] [INSPIRE].
  19. [19]
    L. Rastelli and X. Zhou, How to Succeed at Holographic Correlators Without Really Trying, JHEP04 (2018) 014 [arXiv:1710.05923] [INSPIRE].
  20. [20]
    L. Rastelli and X. Zhou, Mellin amplitudes for AdS 5× S 5 , Phys. Rev. Lett.118 (2017) 091602 [arXiv:1608.06624] [INSPIRE].
  21. [21]
    D.J. Binder, S.M. Chester, S.S. Pufu and Y. Wang, N = 4 Super-Yang-Mills Correlators at Strong Coupling from String Theory and Localization, arXiv:1902.06263 [INSPIRE].
  22. [22]
    X. Zhou, On Superconformal Four-Point Mellin Amplitudes in Dimension d > 2, JHEP08 (2018) 187 [arXiv:1712.02800] [INSPIRE].
  23. [23]
    S.M. Chester, S.S. Pufu and X. Yin, The M-theory S-matrix From ABJM: Beyond 11D Supergravity, JHEP08 (2018) 115 [arXiv:1804.00949] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    D.J. Binder, S.M. Chester and S.S. Pufu, Absence of D 4R 4in M-theory From ABJM, arXiv:1808.10554 [INSPIRE].
  25. [25]
    S.M. Chester and E. Perlmutter, M-Theory Reconstruction from (2,0) CFT and the Chiral Algebra Conjecture, JHEP08 (2018) 116 [arXiv:1805.00892] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    S. Giusto, R. Russo, A. Tyukov and C. Wen, Holographic correlators in AdS3 without Witten diagrams, JHEP09 (2019) 030 [arXiv:1905.12314] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  27. [27]
    L. Rastelli, K. Roumpedakis and X. Zhou, AdS 3× S 3Tree-Level Correlators: Hidden Six-Dimensional Conformal Symmetry, JHEP10 (2019) 140 [arXiv:1905.11983] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  28. [28]
    S. Giusto, R. Russo and C. Wen, Holographic correlators in AdS 3 , JHEP03 (2019) 096 [arXiv:1812.06479] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    X. Zhou, On Mellin Amplitudes in SCFTs with Eight Supercharges, JHEP07 (2018) 147 [arXiv:1804.02397] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    V. Gon¸calves, R. Pereira and X. Zhou, 201Five-Point Function from AdS 5× S 5Supergravity, JHEP10 (2019) 247 [arXiv:1906.05305] [INSPIRE].
  31. [31]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys.313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP03 (2010) 089 [arXiv:0909.4559] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    J. Polchinski, S matrices from AdS space-time, hep-th/9901076 [INSPIRE].
  34. [34]
    L. Susskind, Holography in the flat space limit, AIP Conf. Proc.493 (1999) 98 [hep-th/9901079] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  35. [35]
    S.B. Giddings, Flat space scattering and bulk locality in the AdS/CFT correspondence, Phys. Rev.D 61 (2000) 106008 [hep-th/9907129] [INSPIRE].
  36. [36]
    J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP03 (2011) 025 [arXiv:1011.1485] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  37. [37]
    A.L. Fitzpatrick and J. Kaplan, Analyticity and the Holographic S-matrix, JHEP10 (2012) 127 [arXiv:1111.6972] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  38. [38]
    A.L. Fitzpatrick and J. Kaplan, Scattering States in AdS/CFT, arXiv:1104.2597 [INSPIRE].
  39. [39]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  40. [40]
    O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP11 (2008) 043 [arXiv:0807.4924] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    M.B. Green and P. Vanhove, D instantons, strings and M-theory, Phys. Lett.B 408 (1997) 122 [hep-th/9704145] [INSPIRE].
  42. [42]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys.7 (2003) 831 [hep-th/0206161] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  43. [43]
    N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, Prog. Math.244 (2006) 525 [hep-th/0306238] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  44. [44]
    A. Losev, N. Nekrasov and S.L. Shatashvili, Issues in topological gauge theory, Nucl. Phys.B 534 (1998) 549 [hep-th/9711108] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  45. [45]
    G.W. Moore, N. Nekrasov and S. Shatashvili, Integrating over Higgs branches, Commun. Math. Phys.209 (2000) 97 [hep-th/9712241] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  46. [46]
    F.A. Dolan, On Superconformal Characters and Partition Functions in Three Dimensions, J. Math. Phys.51 (2010) 022301 [arXiv:0811.2740] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  47. [47]
    P. Liendo, C. Meneghelli and V. Mitev, On Correlation Functions of BPS Operators in 3d N = 6 Superconformal Theories, Commun. Math. Phys.350 (2017) 387 [arXiv:1512.06072] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  48. [48]
    C. Cordova, T.T. Dumitrescu and K. Intriligator, Multiplets of Superconformal Symmetry in Diverse Dimensions, JHEP03 (2019) 163 [arXiv:1612.00809] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    S.M. Chester, J. Lee, S.S. Pufu and R. Yacoby, The N = 8 superconformal bootstrap in three dimensions, JHEP09 (2014) 143 [arXiv:1406.4814] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z , JHEP05 (2012) 159 [arXiv:1012.3210] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  51. [51]
    C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Contact Terms, Unitarity and F-Maximization in Three-Dimensional Superconformal Theories, JHEP10 (2012) 053 [arXiv:1205.4142] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  52. [52]
    M.B. Green, M. Gutperle and P. Vanhove, One loop in eleven-dimensions, Phys. Lett.B 409 (1997) 177 [hep-th/9706175] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  53. [53]
    J.G. Russo and A.A. Tseytlin, One loop four graviton amplitude in eleven-dimensional supergravity, Nucl. Phys.B 508 (1997) 245 [hep-th/9707134] [INSPIRE].
  54. [54]
    M.B. Green and S. Sethi, Supersymmetry constraints on type IIB supergravity, Phys. Rev.D 59 (1999) 046006 [hep-th/9808061] [INSPIRE].
  55. [55]
    M.B. Green and P. Vanhove, Duality and higher derivative terms in M-theory, JHEP01 (2006) 093 [hep-th/0510027] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    B. Pioline, D 6 R4amplitudes in various dimensions, JHEP04 (2015) 057 [arXiv:1502.03377] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    M.B. Green, Connections between M-theory and superstrings, Nucl. Phys. Proc. Suppl.68 (1998) 242 [hep-th/9712195] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  58. [58]
    J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge University Press (2007) [INSPIRE].
  59. [59]
    M.B. Green, J.G. Russo and P. Vanhove, Low energy expansion of the four-particle genus-one amplitude in type-II superstring theory, JHEP02 (2008) 020 [arXiv:0801.0322] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    H. Gomez and C.R. Mafra, The Overall Coefficient of the Two-loop Superstring Amplitude Using Pure Spinors, JHEP05 (2010) 017 [arXiv:1003.0678] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  61. [61]
    E. D’Hoker, M. Gutperle and D.H. Phong, Two-loop superstrings and S-duality, Nucl. Phys.B 722 (2005) 81 [hep-th/0503180] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  62. [62]
    H. Gomez and C.R. Mafra, The closed-string 3-loop amplitude and S-duality, JHEP10 (2013) 217 [arXiv:1308.6567] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  63. [63]
    L.F. Alday, On Genus-one String Amplitudes on AdS 5× S 5 , arXiv:1812.11783 [INSPIRE].
  64. [64]
    L.F. Alday and S. Caron-Huot, Gravitational S-matrix from CFT dispersion relations, JHEP12 (2018) 017 [arXiv:1711.02031] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  65. [65]
    L.F. Alday, A. Bissi and E. Perlmutter, Genus-One String Amplitudes from Conformal Field Theory, JHEP06 (2019) 010 [arXiv:1809.10670] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  66. [66]
    D. Bashkirov, A Note on N ≥ 6 Superconformal Quantum Field Theories in three dimensions, arXiv:1108.4081 [INSPIRE].
  67. [67]
    T. Nosaka, Instanton effects in ABJM theory with general R-charge assignments, JHEP03 (2016) 059 [arXiv:1512.02862] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  68. [68]
    M. Mariño and P. Putrov, ABJM theory as a Fermi gas, J. Stat. Mech.1203 (2012) P03001 [arXiv:1110.4066] [INSPIRE].MathSciNetGoogle Scholar
  69. [69]
    F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N ) vector models, JHEP06 (2014) 091 [arXiv:1307.6856] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  70. [70]
    G. Mack, D-independent representation of Conformal Field Theories in D dimensions via transformation to auxiliary Dual Resonance Models. Scalar amplitudes, arXiv:0907.2407 [INSPIRE].
  71. [71]
    H. Elvang, D.Z. Freedman and M. Kiermaier, A simple approach to counterterms in N = 8 supergravity, JHEP11 (2010) 016 [arXiv:1003.5018] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  72. [72]
    H. Elvang, D.Z. Freedman and M. Kiermaier, SUSY Ward identities, Superamplitudes and Counterterms, J. Phys.A 44 (2011) 454009 [arXiv:1012.3401] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  73. [73]
    Y. Wang and X. Yin, Constraining Higher Derivative Supergravity with Scattering Amplitudes, Phys. Rev.D 92 (2015) 041701 [arXiv:1502.03810] [INSPIRE].
  74. [74]
    Y. Wang and X. Yin, Supervertices and Non-renormalization Conditions in Maximal Supergravity Theories, arXiv:1505.05861 [INSPIRE].
  75. [75]
    H. Elvang, Y.-t. Huang and C. Peng, On-shell superamplitudes in N < 4 SYM, JHEP09 (2011) 031 [arXiv:1102.4843] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  76. [76]
    D.Z. Freedman, R. Kallosh and Y. Yamada, Duality Constraints on Counterterms in Supergravities, Fortsch. Phys.66 (2018) 1800054 [arXiv:1807.06704] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  77. [77]
    H. Elvang and Y.-t. Huang, Scattering Amplitudes in Gauge Theory and Gravity, Cambridge University Press (2015) [INSPIRE].
  78. [78]
    D.A. McGady and L. Rodina, Higher-spin massless S-matrices in four-dimensions, Phys. Rev.D 90 (2014) 084048 [arXiv:1311.2938] [INSPIRE].
  79. [79]
    N. Hama, K. Hosomichi and S. Lee, SUSY Gauge Theories on Squashed Three-Spheres, JHEP05 (2011) 014 [arXiv:1102.4716] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  80. [80]
    C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli and B.C. van Rees, Infinite Chiral Symmetry in Four Dimensions, Commun. Math. Phys.336 (2015) 1359 [arXiv:1312.5344] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  81. [81]
    S.M. Chester, J. Lee, S.S. Pufu and R. Yacoby, Exact Correlators of BPS Operators from the 3d Superconformal Bootstrap, JHEP03 (2015) 130 [arXiv:1412.0334] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  82. [82]
    C. Beem, W. Peelaers and L. Rastelli, Deformation quantization and superconformal symmetry in three dimensions, Commun. Math. Phys.354 (2017) 345 [arXiv:1601.05378] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  83. [83]
    M. Dedushenko, S.S. Pufu and R. Yacoby, A one-dimensional theory for Higgs branch operators, JHEP03 (2018) 138 [arXiv:1610.00740] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  84. [84]
    M. Dedushenko, Y. Fan, S.S. Pufu and R. Yacoby, Coulomb Branch Operators and Mirror Symmetry in Three Dimensions, JHEP04 (2018) 037 [arXiv:1712.09384] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  85. [85]
    M. Dedushenko, Y. Fan, S.S. Pufu and R. Yacoby, Coulomb Branch Quantization and Abelianized Monopole Bubbling, JHEP10 (2019) 179 [arXiv:1812.08788] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  86. [86]
    N.B. Agmon, S.M. Chester and S.S. Pufu, Solving M-theory with the Conformal Bootstrap, JHEP06 (2018) 159 [arXiv:1711.07343] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  87. [87]
    M. Hanada, M. Honda, Y. Honma, J. Nishimura, S. Shiba and Y. Yoshida, Numerical studies of the ABJM theory for arbitrary N at arbitrary coupling constant, JHEP05 (2012) 121 [arXiv:1202.5300] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    M. Mariño, Localization at large N in Chern-Simons-matter theories, J. Phys.A 50 (2017) 443007 [arXiv:1608.02959] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  89. [89]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Instanton Bound States in ABJM Theory, JHEP05 (2013) 054 [arXiv:1301.5184] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  90. [90]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Instanton Effects in ABJM Theory from Fermi Gas Approach, JHEP01 (2013) 158 [arXiv:1211.1251] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  91. [91]
    F. Calvo and M. Mariño, Membrane instantons from a semiclassical TBA, JHEP05 (2013) 006 [arXiv:1212.5118] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys.306 (2011) 511 [arXiv:1007.3837] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  93. [93]
    M. Mariño and P. Putrov, Exact Results in ABJM Theory from Topological Strings, JHEP06 (2010) 011 [arXiv:0912.3074] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  94. [94]
    Y. Hatsuda, M. Mariño, S. Moriyama and K. Okuyama, Non-perturbative effects and the refined topological string, JHEP09 (2014) 168 [arXiv:1306.1734] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  95. [95]
    M.B. Green and J.H. Schwarz, Supersymmetrical String Theories, Phys. Lett.109B (1982) 444 [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys.231 (1994) 311 [hep-th/9307010] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  97. [97]
    M.B. Green, H.-h. Kwon and P. Vanhove, Two loops in eleven-dimensions, Phys. Rev.D 61 (2000) 104010 [hep-th/9910055] [INSPIRE].
  98. [98]
    S.M. Chester, AdS 4/C F T 3for unprotected operators, JHEP07 (2018) 030 [arXiv:1803.01379] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    J. Faller, S. Sarkar and M. Verma, Mellin Amplitudes for Fermionic Conformal Correlators, JHEP03 (2018) 106 [arXiv:1711.07929] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  100. [100]
    F.A. Dolan and H. Osborn, Conformal Partial Waves: Further Mathematical Results, arXiv:1108.6194 [INSPIRE].

Copyright information

© The Author(s) 2020

Authors and Affiliations

  • Damon J. Binder
    • 1
  • Shai M. Chester
    • 2
    Email author
  • Silviu S. Pufu
    • 1
  1. 1.Joseph Henry LaboratoriesPrinceton UniversityPrincetonUSA
  2. 2.Department of Particle Physics and AstrophysicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations