Modular forms in the spectral action of Bianchi IX gravitational instantons
- 49 Downloads
Abstract
We prove a modularity property for the heat kernel and the Seeley-deWitt coefficients of the heat kernel expansion for the Dirac-Laplacian on the Bianchi IX gravitational instantons. We prove, via an isospectrality result for the Dirac operators, that each term in the expansion is a vector-valued modular form, with an associated ordinary (meromorphic) modular form of weight 2. We discuss explicit examples related to well known modular forms. Our results show the existence of arithmetic structures in Euclidean gravity models based on the spectral action functional.
Keywords
Models of Quantum Gravity Non-Commutative GeometryNotes
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
References
- [1]P. Amsterdamski, A.L. Berkin and D.J. O’Connor, b 8 ‘Hamidew’ coefficient for a scalar field, Class. Quant. Grav. 6 (1989) 1981 [INSPIRE].
- [2]I.G. Avramidi, Heat kernel and quantum gravity, Lect. Notes Phys. Monogr. 64 (2000) 1 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
- [3]I.G. Avramidi, Heat kernel method and its applications, Springer, Cham, Switzerland (2015).Google Scholar
- [4]M.V. Babich and D.A. Korotkin, Selfdual SU(2) invariant Einstein metrics and modular dependence of theta functions, Lett. Math. Phys. 46 (1998) 323 [gr-qc/9810025] [INSPIRE].
- [5]P. Bantay and T. Gannon, Vector-valued modular functions for the modular group and the hypergeometric equation, Commun. Number Theor. Phys. 1 (2007) 651.MathSciNetCrossRefzbMATHGoogle Scholar
- [6]A.O. Barvinsky and A. Yu. Kamenshchik, Tunneling geometries. 1. Analyticity, unitarity and instantons in quantum cosmology, Phys. Rev. D 50 (1994) 5093 [gr-qc/9311022] [INSPIRE].
- [7]L. Boutet de Monvel, Boundary problems for pseudo-differential operators, Acta Math. 126 (1971) 11.MathSciNetCrossRefzbMATHGoogle Scholar
- [8]A.H. Chamseddine and A. Connes, Spectral action for Robertson-Walker metrics, JHEP 10 (2012) 101 [arXiv:1105.4637] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [9]A.H. Chamseddine and A. Connes, Noncommutative geometric spaces with boundary: spectral action, J. Geom. Phys. 61 (2011) 317 [arXiv:1008.3980] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [10]A.H. Chamseddine and A. Connes, The spectral action principle, Commun. Math. Phys. 186 (1997) 731 [hep-th/9606001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [11]J.M. Charap and M.J. Duff, Gravitational effects on Yang-Mills topology, Phys. Lett. B 69 (1977) 445 [INSPIRE].
- [12]A. Connes and M. Marcolli, Noncommutative geometry, quantum fields and motives, Amer. Math. Soc. Coll. Publ. 55, American Mathematical Society, U.S.A. (2007).Google Scholar
- [13]T. Eguchi and A.J. Hanson, Selfdual solutions to Euclidean gravity, Annals Phys. 120 (1979) 82 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
- [14]M. Eichler and D. Zagier, The theory of Jacobi forms, Prog. Math. 55, Birkhäuser, Boston, MA, U.S.A. (1985).Google Scholar
- [15]L.-Z. Fang and R. Ruffini eds., Quantum cosmology, World Scientific, Singapore (1987).Google Scholar
- [16]W. Fan, F. Fathizadeh and M. Marcolli, Spectral action for Bianchi type-IX cosmological models, JHEP 10 (2015) 085 [arXiv:1506.06779] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [17]W. Fan, F. Fathizadeh and M. Marcolli, Motives and periods in Bianchi IX gravity models, Lett. Math. Phys. 108 (2018) 2729 [arXiv:1709.08082] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [18]S. Farinelli and G. Schwarz, On the spectrum of the Dirac operator under boundary conditions, J. Geom. Phys. 28 (1998) 67.ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [19]F. Fathizadeh, A. Ghorbanpour and M. Khalkhali, Rationality of spectral action for Robertson-Walker metrics, JHEP 12 (2014) 064 [arXiv:1407.5972] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [20]F. Fathizadeh, Y. Kafkoulis and M. Marcolli, Bell polynomials and Brownian bridge in spectral gravity models on multifractal Robertson-Walker cosmologies, arXiv:1811.02972 [INSPIRE].
- [21]F. Fathizadeh and M. Marcolli, Periods and motives in the spectral action of Robertson-Walker spacetimes, Commun. Math. Phys. 356 (2017) 641 [arXiv:1611.01815] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [22]P. Gilkey, Invariance theory, the heat equation, and the Atiyah-Singer index theorem, Math. Lect. Ser. 11, Publish or Perish Inc., Wilmington, DE, U.S.A. (1984).Google Scholar
- [23]J.J. Halliwell, Derivation of the Wheeler-DeWitt equation from a path integral for minisuperspace models, Phys. Rev. D 38 (1988) 2468 [INSPIRE].
- [24]J.J. Halliwell and J. Louko, Steepest descent contours in the path integral approach to quantum cosmology. 1. The de Sitter minisuperspace model, Phys. Rev. D 39 (1989) 2206 [INSPIRE].
- [25]N.J. Hitchin, Twistor spaces, Einstein metrics and isomonodromic deformations, J. Diff. Geom. 42 (1995) 30.MathSciNetCrossRefzbMATHGoogle Scholar
- [26]K. Kirsten and F.L. Williams eds., A window into zeta and modular physics, Math. Sci. Res. Inst. Publ. 57, Cambridge University Press, Cambridge, U.K. (2010).Google Scholar
- [27]A. Kitaev and D. Korotkin, On solutions of the Schlesinger equations in terms of Θ-functions, Int. Math. Res. Not. 1998 (1998) 877.Google Scholar
- [28]M. Knopp and G. Mason, Vector-valued modular forms and Poincaré series, Illinois J. Math. 48 (2004) 1345.MathSciNetzbMATHGoogle Scholar
- [29]H.B. Lawson and M.-L. Michelsohn, Spin geometry, Princeton Math. Ser. 38, Princeton University Press, Princeton, NJ, U.S.A. (1990).Google Scholar
- [30]Y.I. Manin and M. Marcolli, Symbolic dynamics, modular curves, and Bianchi IX cosmologies, Ann. Fac. Sci. Toulouse Math. 25 (2016) 517 [arXiv:1504.04005] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
- [31]Y.I. Manin and M. Marcolli, Big bang, blowup and modular curves: algebraic geometry in cosmology, SIGMA 10 (2014) 073 [arXiv:1402.2158] [INSPIRE].MathSciNetzbMATHGoogle Scholar
- [32]M. Marcolli, Noncommutative cosmology, World Scientific, Singapore (2018).Google Scholar
- [33]M. Marcolli, Feynman motives, World Scientific, Singapore (2009).Google Scholar
- [34]G. Mason, Vector-valued modular forms and linear differential operators, Int. J. Number Theor. 03 (2007) 377.MathSciNetCrossRefzbMATHGoogle Scholar
- [35]S. Mukherjee and B.C. Paul, Gravitational instantons: recent developments, Mod. Phys. Lett. A 17 (2002) 1123 [INSPIRE].
- [36]P.M. Petropoulos and P. Vanhove, Gravity, strings, modular and quasimodular forms, Ann. Math. Blaise Pascal 19 (2012) 379.MathSciNetCrossRefzbMATHGoogle Scholar
- [37]J.-P. Serre, A course in arithmetic, Springer, New York, NY, U.S.A. (1973).Google Scholar
- [38]W. Stein, Modular forms, a computational approach, Grad. Stud. Math. 79, American Mathematical Society, U.S.A. (2007).Google Scholar
- [39]K. Tod, Self-dual Einstein metrics from the Painlevé VI equation, Phys. Lett. A 190 (1994) 221.Google Scholar
- [40]A.E.M. van de Ven, Index free heat kernel coefficients, Class. Quant. Grav. 15 (1998) 2311 [hep-th/9708152] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [41]W.D. van Suijlekom, Noncommutative geometry and particle physics, Springer, Dordrecht, The Netherlands (2015).Google Scholar
- [42]D.V. Vassilevich, Heat kernel expansion: user’s manual, Phys. Rept. 388 (2003) 279 [hep-th/0306138] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [43]M. Wodzicki, Local invariants of spectral asymmetry, Invent. Math. 75 (1984) 143.ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [44]M. Wodzicki, Noncommutative residue. Chapter I. Fundamentals, in K-theory, arithmetic and geometry, Lect. Notes Math. 1289, Springer, Berlin Heidelberg, Germany (1987), pg. 320.Google Scholar
- [45]D. Zagier, Elliptic modular forms and their applications, in The 1-2-3 of modular forms, Springer, Berlin Heidelberg, Germany (2008), pg. 1.Google Scholar