Advertisement

Journal of High Energy Physics

, 2019:231 | Cite as

New physics from high energy tops

  • Marco Farina
  • Cristina MondinoEmail author
  • Duccio Pappadopulo
  • Joshua T. Ruderman
Open Access
Regular Article - Theoretical Physics
  • 22 Downloads

Abstract

Precision measurements of high energy top quarks at the LHC constitute a powerful probe of new physics. We study the effect of four fermion operators involving two tops and two light quarks on the high energy tail of the \( t\overline{t} \) invariant mass distribution. We use existing measurements at a center of mass energy of 13 TeV, and state of the art calculations of the Standard Model contribution, to derive bounds on the coefficients of these operators. We estimate the projected reach of the LHC at higher luminosities and discuss the validity of these limits within the Effective Field Theory description. We find that current measurements constrain the mass scale of these operators to be larger than about 1–2 TeV, while we project that future LHC data will be sensitive to mass scales of about 3–4 TeV. We apply our bounds to constrain composite Higgs models with partial compositeness and models with approximate flavor symmetries. We find our limits to be most relevant to flavor non-universal models with a moderately large coupling of the heavy new physics states to third generation quarks.

Keywords

Beyond Standard Model Effective Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    F. Feruglio, The Chiral approach to the electroweak interactions, Int. J. Mod. Phys. A 8 (1993) 4937 [hep-ph/9301281] [INSPIRE].
  3. [3]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    R. Alonso, M.B. Gavela, L. Merlo, S. Rigolin and J. Yepes, The Effective Chiral Lagrangian for a Light Dynamical “Higgs Particle”, Phys. Lett. B 722 (2013) 330 [Erratum ibid. B 726 (2013) 926] [arXiv:1212.3305] [INSPIRE].
  5. [5]
    R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective Lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    S. Davidson and S. Descotes-Genon, Constraining flavoured contact interactions at the LHC, JHEP 05 (2014) 066 [arXiv:1311.5981] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Biekötter, A. Knochel, M. Krämer, D. Liu and F. Riva, Vices and virtues of Higgs effective field theories at large energy, Phys. Rev. D 91 (2015) 055029 [arXiv:1406.7320] [INSPIRE].ADSGoogle Scholar
  8. [8]
    M. de Vries, Four-quark effective operators at hadron colliders, JHEP 03 (2015) 095 [arXiv:1409.4657] [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    A. Falkowski, B. Fuks, K. Mawatari, K. Mimasu, F. Riva and V. Sanz, Rosetta: an operator basis translator for Standard Model effective field theory, Eur. Phys. J. C 75 (2015) 583 [arXiv:1508.05895] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    V. Cirigliano, M. Gonzalez-Alonso and M.L. Graesser, Non-standard Charged Current Interactions: beta decays versus the LHC, JHEP 02 (2013) 046 [arXiv:1210.4553] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J. de Blas, M. Chala and J. Santiago, Global Constraints on Lepton-Quark Contact Interactions, Phys. Rev. D 88 (2013) 095011 [arXiv:1307.5068] [INSPIRE].ADSGoogle Scholar
  12. [12]
    A. Falkowski, M. Gonzalez-Alonso, A. Greljo, D. Marzocca and M. Son, Anomalous Triple Gauge Couplings in the Effective Field Theory Approach at the LHC, JHEP 02 (2017) 115 [arXiv:1609.06312] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Farina, G. Panico, D. Pappadopulo, J.T. Ruderman, R. Torre and A. Wulzer, Energy helps accuracy: electroweak precision tests at hadron colliders, Phys. Lett. B 772 (2017) 210 [arXiv:1609.08157] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    N. Raj, Anticipating nonresonant new physics in dilepton angular spectra at the LHC, Phys. Rev. D 95 (2017) 015011 [arXiv:1610.03795] [INSPIRE].ADSGoogle Scholar
  15. [15]
    S. Alioli, M. Farina, D. Pappadopulo and J.T. Ruderman, Precision Probes of QCD at High Energies, JHEP 07 (2017) 097 [arXiv:1706.03068] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. Greljo and D. Marzocca, High-p T dilepton tails and flavor physics, Eur. Phys. J. C 77 (2017) 548 [arXiv:1704.09015] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    B. Bellazzini, F. Riva, J. Serra and F. Sgarlata, The other effective fermion compositeness, JHEP 11 (2017) 020 [arXiv:1706.03070] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Azatov, J. Elias-Miro, Y. Reyimuaji and E. Venturini, Novel measurements of anomalous triple gauge couplings for the LHC, JHEP 10 (2017) 027 [arXiv:1707.08060] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    G. Panico, F. Riva and A. Wulzer, Diboson Interference Resurrection, Phys. Lett. B 776 (2018) 473 [arXiv:1708.07823] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    R. Franceschini, G. Panico, A. Pomarol, F. Riva and A. Wulzer, Electroweak Precision Tests in High-Energy Diboson Processes, JHEP 02 (2018) 111 [arXiv:1712.01310] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Alioli, M. Farina, D. Pappadopulo and J.T. Ruderman, Catching a New Force by the Tail, Phys. Rev. Lett. 120 (2018) 101801 [arXiv:1712.02347] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J.A. Aguilar-Saavedra, Effective four-fermion operators in top physics: A Roadmap, Nucl. Phys. B 843 (2011) 638 [Erratum ibid. B 851 (2011) 443] [arXiv:1008.3562] [INSPIRE].
  23. [23]
    J.A. Aguilar-Saavedra and M. Pérez-Victoria, Probing the Tevatron t tbar asymmetry at LHC, JHEP 05 (2011) 034 [arXiv:1103.2765] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J.F. Kamenik, M. Papucci and A. Weiler, Constraining the dipole moments of the top quark, Phys. Rev. D 85 (2012) 071501 [Erratum ibid. D 88 (2013) 039903] [arXiv:1107.3143] [INSPIRE].
  25. [25]
    C. Zhang, N. Greiner and S. Willenbrock, Constraints on Non-standard Top Quark Couplings, Phys. Rev. D 86 (2012) 014024 [arXiv:1201.6670] [INSPIRE].ADSGoogle Scholar
  26. [26]
    R. Röntsch and M. Schulze, Constraining couplings of top quarks to the Z boson in \( t\overline{t} \) + Z production at the LHC, JHEP 07 (2014) 091 [Erratum ibid. 1509 (2015) 132] [arXiv:1404.1005] [INSPIRE].
  27. [27]
    C. Degrande, F. Maltoni, J. Wang and C. Zhang, Automatic computations at next-to-leading order in QCD for top-quark flavor-changing neutral processes, Phys. Rev. D 91 (2015) 034024 [arXiv:1412.5594] [INSPIRE].ADSGoogle Scholar
  28. [28]
    G. Durieux, F. Maltoni and C. Zhang, Global approach to top-quark flavor-changing interactions, Phys. Rev. D 91 (2015) 074017 [arXiv:1412.7166] [INSPIRE].ADSGoogle Scholar
  29. [29]
    R. Röntsch and M. Schulze, Probing top-Z dipole moments at the LHC and ILC, JHEP 08 (2015) 044 [arXiv:1501.05939] [INSPIRE].CrossRefGoogle Scholar
  30. [30]
    D. Buarque Franzosi and C. Zhang, Probing the top-quark chromomagnetic dipole moment at next-to-leading order in QCD, Phys. Rev. D 91 (2015) 114010 [arXiv:1503.08841] [INSPIRE].ADSGoogle Scholar
  31. [31]
    A. Buckley et al., Global fit of top quark effective theory to data, Phys. Rev. D 92 (2015) 091501 [arXiv:1506.08845] [INSPIRE].ADSGoogle Scholar
  32. [32]
    J.A. Dror, M. Farina, E. Salvioni and J. Serra, Strong tW Scattering at the LHC, JHEP 01 (2016) 071 [arXiv:1511.03674] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Buckley et al., Constraining top quark effective theory in the LHC Run II era, JHEP 04 (2016) 015 [arXiv:1512.03360] [INSPIRE].ADSGoogle Scholar
  34. [34]
    C. Zhang, Single Top Production at Next-to-Leading Order in the Standard Model Effective Field Theory, Phys. Rev. Lett. 116 (2016) 162002 [arXiv:1601.06163] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    O. Bessidskaia Bylund, F. Maltoni, I. Tsinikos, E. Vryonidou and C. Zhang, Probing top quark neutral couplings in the Standard Model Effective Field Theory at NLO in QCD, JHEP 05 (2016) 052 [arXiv:1601.08193] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Schulze and Y. Soreq, Pinning down electroweak dipole operators of the top quark, Eur. Phys. J. C 76 (2016) 466 [arXiv:1603.08911] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Constraining the top-Higgs sector of the Standard Model Effective Field Theory, Phys. Rev. D 94 (2016) 034031 [arXiv:1605.04311] [INSPIRE].ADSGoogle Scholar
  38. [38]
    F. Maltoni, E. Vryonidou and C. Zhang, Higgs production in association with a top-antitop pair in the Standard Model Effective Field Theory at NLO in QCD, JHEP 10 (2016) 123 [arXiv:1607.05330] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    C. Englert and M. Russell, Top quark electroweak couplings at future lepton colliders, Eur. Phys. J. C 77 (2017) 535 [arXiv:1704.01782] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    C. Zhang, Constraining qqtt operators from four-top production: a case for enhanced EFT sensitivity, Chin. Phys. C 42 (2018) 023104 [arXiv:1708.05928] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    D. Barducci et al., Interpreting top-quark LHC measurements in the standard-model effective field theory, arXiv:1802.07237 [INSPIRE].
  42. [42]
    M. Chala, J. Santiago and M. Spannowsky, Constraining four-fermion operators using rare top decays, arXiv:1809.09624 [INSPIRE].
  43. [43]
    CMS collaboration, Measurement of differential cross sections for the production of top quark pairs and of additional jets in lepton+jets events from pp collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. D 97 (2018) 112003 [arXiv:1803.08856] [INSPIRE].
  44. [44]
    M. Czakon, P. Fiedler and A. Mitov, Total Top-Quark Pair-Production Cross Section at Hadron Colliders Through O(α S4), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M. Czakon, D. Heymes and A. Mitov, High-precision differential predictions for top-quark pairs at the LHC, Phys. Rev. Lett. 116 (2016) 082003 [arXiv:1511.00549] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Czakon, D. Heymes and A. Mitov, Dynamical scales for multi-TeV top-pair production at the LHC, JHEP 04 (2017) 071 [arXiv:1606.03350] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    M. Czakon, D. Heymes and A. Mitov, fastNLO tables for NNLO top-quark pair differential distributions, arXiv:1704.08551 [INSPIRE].
  48. [48]
    M. Czakon, D. Heymes, A. Mitov, D. Pagani, I. Tsinikos and M. Zaro, Top-pair production at the LHC through NNLO QCD and NLO EW, JHEP 10 (2017) 186 [arXiv:1705.04105] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    ATLAS collaboration, Measurements of top-quark pair differential cross-sections in the lepton+jets channel in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector, JHEP 11 (2017) 191 [arXiv:1708.00727] [INSPIRE].
  50. [50]
    ATLAS collaboration, Measurements of \( t\overline{t} \) differential cross-sections of highly boosted top quarks decaying to all-hadronic final states in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector, Phys. Rev. D 98 (2018) 012003 [arXiv:1801.02052] [INSPIRE].
  51. [51]
    ATLAS collaboration, Measurements of top quark pair relative differential cross-sections with ATLAS in pp collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 73 (2013) 2261 [arXiv:1207.5644] [INSPIRE].
  52. [52]
    ATLAS collaboration, Measurements of normalized differential cross sections for \( t\overline{t} \) production in pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Phys. Rev. D 90 (2014) 072004 [arXiv:1407.0371] [INSPIRE].
  53. [53]
    ATLAS collaboration, Differential top-antitop cross-section measurements as a function of observables constructed from final-state particles using pp collisions at \( \sqrt{s}=7 \) TeV in the ATLAS detector, JHEP 06 (2015) 100 [arXiv:1502.05923] [INSPIRE].
  54. [54]
    ATLAS collaboration, Measurement of the differential cross-section of highly boosted top quarks as a function of their transverse momentum in \( \sqrt{s}=8 \) TeV proton-proton collisions using the ATLAS detector, Phys. Rev. D 93 (2016) 032009 [arXiv:1510.03818] [INSPIRE].
  55. [55]
    ATLAS collaboration, Measurements of top-quark pair differential cross-sections in the lepton+jets channel in pp collisions at \( \sqrt{s}=8 \) TeV using the ATLAS detector, Eur. Phys. J. C 76 (2016) 538 [arXiv:1511.04716] [INSPIRE].
  56. [56]
    ATLAS collaboration, Measurement of top quark pair differential cross-sections in the dilepton channel in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with ATLAS, Phys. Rev. D 94 (2016) 092003 [arXiv:1607.07281] [INSPIRE].
  57. [57]
    ATLAS collaboration, Measurements of top-quark pair differential cross-sections in the eμ channel in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector, Eur. Phys. J. C 77 (2017) 292 [arXiv:1612.05220] [INSPIRE].
  58. [58]
    CMS collaboration, Measurement of differential top-quark pair production cross sections in pp colisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 73 (2013) 2339 [arXiv:1211.2220] [INSPIRE].
  59. [59]
    CMS collaboration, Measurement of the differential cross section for top quark pair production in pp collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 542 [arXiv:1505.04480] [INSPIRE].
  60. [60]
    CMS collaboration, Measurement of the integrated and differential \( t\overline{t} \) production cross sections for high-p t top quarks in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 94 (2016) 072002 [arXiv:1605.00116] [INSPIRE].
  61. [61]
    CMS collaboration, Measurement of differential cross sections for top quark pair production using the lepton+jets final state in proton-proton collisions at 13 TeV, Phys. Rev. D 95 (2017) 092001 [arXiv:1610.04191] [INSPIRE].
  62. [62]
    CMS collaboration, Measurement of double-differential cross sections for top quark pair production in pp collisions at \( \sqrt{s}=8 \) TeV and impact on parton distribution functions, Eur. Phys. J. C 77 (2017) 459 [arXiv:1703.01630] [INSPIRE].
  63. [63]
    ATLAS collaboration, A search for \( t\overline{t} \) resonances using lepton-plus-jets events in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 08 (2015) 148 [arXiv:1505.07018] [INSPIRE].
  64. [64]
    ATLAS collaboration, Search for Heavy Higgs Bosons A/H Decaying to a Top Quark Pair in pp Collisions at \( \sqrt{s}=8 \) TeV with the ATLAS Detector, Phys. Rev. Lett. 119 (2017) 191803 [arXiv:1707.06025] [INSPIRE].
  65. [65]
    ATLAS collaboration, Search for heavy particles decaying into top-quark pairs using lepton-plus-jets events in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 565 [arXiv:1804.10823] [INSPIRE].
  66. [66]
    CMS collaboration, Search for resonant \( t\overline{t} \) production in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 93 (2016) 012001 [arXiv:1506.03062] [INSPIRE].
  67. [67]
    CMS collaboration, Search for \( \mathrm{t}\overline{\mathrm{t}} \) resonances in highly boosted lepton+jets and fully hadronic final states in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 07 (2017) 001 [arXiv:1704.03366] [INSPIRE].
  68. [68]
    CMS collaboration, Search for resonant \( \mathrm{t}\overline{\mathrm{t}} \) production in proton-proton collisions at \( \sqrt{s}=13 \) TeV, submitted to: JHEP (2018) [arXiv:1810.05905] [INSPIRE].
  69. [69]
    M. Czakon, D. Heymes and A. Mitov, Bump hunting in LHC tt events, Phys. Rev. D 94 (2016) 114033 [arXiv:1608.00765] [INSPIRE].ADSGoogle Scholar
  70. [70]
    J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    A. Manohar, P. Nason, G.P. Salam and G. Zanderighi, How bright is the proton? A precise determination of the photon parton distribution function, Phys. Rev. Lett. 117 (2016) 242002 [arXiv:1607.04266] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    NNPDF collaboration, Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  73. [73]
    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].ADSGoogle Scholar
  75. [75]
    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001.Google Scholar
  76. [76]
    J.A. Aguilar-Saavedra, D. Amidei, A. Juste and M. Pérez-Victoria, Asymmetries in top quark pair production at hadron colliders, Rev. Mod. Phys. 87 (2015) 421 [arXiv:1406.1798] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    M.P. Rosello and M. Vos, Constraints on four-fermion interactions from the \( t\overline{t} \) charge asymmetry at hadron colliders, Eur. Phys. J. C 76 (2016) 200 [arXiv:1512.07542] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    CDF collaboration, Measurement of the top quark forward-backward production asymmetry and its dependence on event kinematic properties, Phys. Rev. D 87 (2013) 092002 [arXiv:1211.1003] [INSPIRE].
  79. [79]
    D0 collaboration, Measurement of the Forward-Backward Asymmetry in Top Quark-Antiquark Production in pp Collisions using the Lepton+Jets Channel, Phys. Rev. D 90 (2014) 072011 [arXiv:1405.0421] [INSPIRE].
  80. [80]
    CMS collaboration, Measurement of the charge asymmetry in top quark pair production in pp collisions at \( \sqrt{s}=8 \) TeV using a template method, Phys. Rev. D 93 (2016) 034014 [arXiv:1508.03862] [INSPIRE].
  81. [81]
    ATLAS collaboration, Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 87 [Erratum ibid. C 77 (2017) 564] [arXiv:1509.02358] [INSPIRE].
  82. [82]
    ATLAS collaboration, Measurement of the charge asymmetry in highly boosted top-quark pair production in \( \sqrt{s}=8 \) TeV pp collision data collected by the ATLAS experiment, Phys. Lett. B 756 (2016) 52 [arXiv:1512.06092] [INSPIRE].
  83. [83]
    ATLAS collaboration, Measurement of dijet cross sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector, JHEP 05 (2014) 059 [arXiv:1312.3524] [INSPIRE].
  84. [84]
    ATLAS collaboration, Measurement of the inclusive jet cross-section in proton-proton collisions at \( \sqrt{s}=7 \) TeV using 4.5 fb −1 of data with the ATLAS detector, JHEP 02 (2015) 153 [Erratum ibid. 1509 (2015) 141] [arXiv:1410.8857] [INSPIRE].
  85. [85]
    CMS collaboration, Measurements of differential jet cross sections in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the CMS detector, Phys. Rev. D 87 (2013) 112002 [Erratum ibid. D 87 (2013) 119902] [arXiv:1212.6660] [INSPIRE].
  86. [86]
    ATLAS collaboration, Measurement of the \( b\overline{b} \) dijet cross section in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 670 [arXiv:1607.08430] [INSPIRE].
  87. [87]
    R. Contino, The Higgs as a Composite Nambu-Goldstone Boson, in Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics: Physics of the large and the small (TASI 09), Boulder U.S.A. (2009), pg. 235 [arXiv:1005.4269] [INSPIRE].
  88. [88]
    G. Panico and A. Wulzer, The Composite Nambu-Goldstone Higgs, Lect. Notes Phys. 913 (2016) pp.1 [arXiv:1506.01961] [INSPIRE].
  89. [89]
    CMS collaboration, Search for physics beyond the standard model in events with two leptons of same sign, missing transverse momentum and jets in proton–proton collisions at \( \sqrt{s}=13 \) TeV, Eur. Phys. J. C 77 (2017) 578 [arXiv:1704.07323] [INSPIRE].
  90. [90]
    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An Effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].
  91. [91]
    CMS collaboration, Search for pair production of excited top quarks in the lepton + jets final state, Phys. Lett. B 778 (2018) 349 [arXiv:1711.10949] [INSPIRE].
  92. [92]
    ATLAS collaboration, A search for pair-produced resonances in four-jet final states at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 250 [arXiv:1710.07171] [INSPIRE].
  93. [93]
    R. Barbieri, G. Isidori, J. Jones-Perez, P. Lodone and D.M. Straub, U(2) and Minimal Flavour Violation in Supersymmetry, Eur. Phys. J. C 71 (2011) 1725 [arXiv:1105.2296] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    G. D’Agostini, A Multidimensional unfolding method based on Bayes’ theorem, Nucl. Instrum. Meth. A 362 (1995) 487 [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    K. Cranmer and L. Heinrich, Recasting through reweighting, zenodo (2017).Google Scholar
  96. [96]
    M. Czakon, N.P. Hartland, A. Mitov, E.R. Nocera and J. Rojo, Pinning down the large-x gluon with NNLO top-quark pair differential distributions, JHEP 04 (2017) 044 [arXiv:1611.08609] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    A. Azatov, R. Contino, C.S. Machado and F. Riva, Helicity selection rules and noninterference for BSM amplitudes, Phys. Rev. D 95 (2017) 065014 [arXiv:1607.05236] [INSPIRE].ADSGoogle Scholar
  98. [98]
    G. Panico and A. Wulzer, The Discrete Composite Higgs Model, JHEP 09 (2011) 135 [arXiv:1106.2719] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  99. [99]
    O. Matsedonskyi, G. Panico and A. Wulzer, Light Top Partners for a Light Composite Higgs, JHEP 01 (2013) 164 [arXiv:1204.6333] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    G. Panico, M. Redi, A. Tesi and A. Wulzer, On the Tuning and the Mass of the Composite Higgs, JHEP 03 (2013) 051 [arXiv:1210.7114] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    A. De Simone, O. Matsedonskyi, R. Rattazzi and A. Wulzer, A First Top Partner Hunter’s Guide, JHEP 04 (2013) 004 [arXiv:1211.5663] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.C.N. Yang Institute for Theoretical PhysicsStony BrookU.S.A.
  2. 2.Center for Cosmology and Particle Physics, Department of PhysicsNew York UniversityNew YorkU.S.A.
  3. 3.Bloomberg LPNew YorkU.S.A.

Personalised recommendations