Journal of High Energy Physics

, 2019:230 | Cite as

Living orthogonally: quasi-universal extra dimensions

  • Mathew Thomas Arun
  • Debajyoti Choudhury
  • Divya SachdevaEmail author
Open Access
Regular Article - Theoretical Physics


The minimal Universal Extra Dimension scenario is highly constrained owing to opposing constraints from the observed relic density on the one hand, and the non-observation of new states at the LHC on the other. Simple extensions in five-dimensions can only postpone the inevitable. Here, we propose a six-dimensional alternative with the key feature being that the SM quarks and leptons are localized on orthogonal directions whereas gauge bosons traverse the entire bulk. Several different realizations of electroweak symmetry breaking are possible, while maintaining agreement with low energy observables. This model is not only consistent with all the current constraints opposing the minimal Universal Extra Dimension scenario but also allows for a multi-TeV dark matter particle without the need for any fine-tuning. In addition, it promises a plethora of new signatures at the LHC and other future experiments.


Phenomenology of Field Theories in Higher Dimensions 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    ATLAS collaboration, Combined search for the Standard Model Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. D 86 (2012) 032003 [arXiv:1207.0319] [INSPIRE].
  3. [3]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  4. [4]
    H.-C. Cheng, K.T. Matchev and M. Schmaltz, Radiative corrections to Kaluza-Klein masses, Phys. Rev. D 66 (2002) 036005 [hep-ph/0204342] [INSPIRE].
  5. [5]
    G. Servant and T.M.P. Tait, Is the lightest Kaluza-Klein particle a viable dark matter candidate?, Nucl. Phys. B 650 (2003) 391 [hep-ph/0206071] [INSPIRE].
  6. [6]
    K. Kong and K.T. Matchev, Precise calculation of the relic density of Kaluza-Klein dark matter in universal extra dimensions, JHEP 01 (2006) 038 [hep-ph/0509119] [INSPIRE].
  7. [7]
    F. Burnell and G.D. Kribs, The abundance of Kaluza-Klein dark matter with coannihilation, Phys. Rev. D 73 (2006) 015001 [hep-ph/0509118] [INSPIRE].
  8. [8]
    M. Kakizaki, S. Matsumoto and M. Senami, Relic abundance of dark matter in the minimal universal extra dimension model, Phys. Rev. D 74 (2006) 023504 [hep-ph/0605280] [INSPIRE].
  9. [9]
    G. Bélanger, M. Kakizaki and A. Pukhov, Dark matter in UED: the role of the second KK level, JCAP 02 (2011) 009 [arXiv:1012.2577] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    M. Baak et al., Updated status of the global electroweak fit and constraints on new physics, Eur. Phys. J. C 72 (2012) 2003 [arXiv:1107.0975] [INSPIRE].
  11. [11]
    U. Haisch and A. Weiler, Bound on minimal universal extra dimensions from \( \overline{B}\to {X}_s\gamma \), Phys. Rev. D 76 (2007) 034014 [hep-ph/0703064] [INSPIRE].
  12. [12]
    U.K. Dey and T. Jha, Rare top decays in minimal and nonminimal universal extra dimension models, Phys. Rev. D 94 (2016) 056011 [arXiv:1602.03286] [INSPIRE].
  13. [13]
    D. Choudhury and K. Ghosh, Bounds on universal extra dimension from LHC Run I and II data, Phys. Lett. B 763 (2016) 155 [arXiv:1606.04084] [INSPIRE].
  14. [14]
    N. Deutschmann, T. Flacke and J.S. Kim, Current LHC constraints on minimal universal extra dimensions, Phys. Lett. B 771 (2017) 515 [arXiv:1702.00410] [INSPIRE].
  15. [15]
    J. Beuria, A. Datta, D. Debnath and K.T. Matchev, LHC collider phenomenology of minimal universal extra dimensions, Comput. Phys. Commun. 226 (2018) 187 [arXiv:1702.00413] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    ATLAS collaboration, Search for direct top squark pair production and dark matter production in final states with two leptons in \( \sqrt{s}=13 \) TeV pp collisions using 13.3 fb −1 of ATLAS data, ATLAS-CONF-2016-076 (2016).
  17. [17]
    ATLAS collaboration, Search for squarks and gluinos in events with an isolated lepton, jets and missing transverse momentum at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 96 (2017) 112010.Google Scholar
  18. [18]
    WMAP collaboration, Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].
  19. [19]
    Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  20. [20]
    G. Burdman, B.A. Dobrescu and E. Ponton, Six-dimensional gauge theory on the chiral square, JHEP 02 (2006) 033 [hep-ph/0506334] [INSPIRE].
  21. [21]
    B.A. Dobrescu and E. Ponton, Chiral compactification on a square, JHEP 03 (2004) 071 [hep-th/0401032] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    N. Maru, T. Nomura, J. Sato and M. Yamanaka, The universal extra dimensional model with S 2 /Z(2) extra-space, Nucl. Phys. B 830 (2010) 414 [arXiv:0904.1909] [INSPIRE].
  23. [23]
    G. Cacciapaglia, A. Deandrea and J. Llodra-Perez, A dark matter candidate from Lorentz invariance in 6D, JHEP 03 (2010) 083 [arXiv:0907.4993] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    H. Dohi and K.-Y. Oda, Universal extra dimensions on real projective plane, Phys. Lett. B 692 (2010) 114 [arXiv:1004.3722] [INSPIRE].
  25. [25]
    B.A. Dobrescu, D. Hooper, K. Kong and R. Mahbubani, Spinless photon dark matter from two universal extra dimensions, JCAP 10 (2007) 012 [arXiv:0706.3409] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M.T. Arun and D. Choudhury, Stabilization of moduli in spacetime with nested warping and the UED, Nucl. Phys. B 923 (2017) 258 [arXiv:1606.00642] [INSPIRE].
  27. [27]
    M.T. Arun, D. Choudhury and D. Sachdeva, Universal extra dimensions and the graviton portal to dark matter, JCAP 10 (2017) 041 [arXiv:1703.04985] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    T.-j. Li, GUT breaking on M 4 × T 2 /(Z(2) × Z (2)), Phys. Lett. B 520 (2001) 377 [hep-th/0107136] [INSPIRE].
  29. [29]
    T.-j. Li and W. Liao, Low-energy gauge unification theory, Mod. Phys. Lett. A 17 (2002) 2393 [hep-th/0207126] [INSPIRE].
  30. [30]
    H. Georgi, E.E. Jenkins and E.H. Simmons, Ununifying the standard model, Phys. Rev. Lett. 62 (1989) 2789 [Erratum ibid. 63 (1989) 1540] [INSPIRE].
  31. [31]
    H. Georgi, E.E. Jenkins and E.H. Simmons, The ununified standard model, Nucl. Phys. B 331 (1990) 541 [INSPIRE].
  32. [32]
    D. Choudhury, A completely ununified electroweak model, Mod. Phys. Lett. A 6 (1991) 1185 [INSPIRE].
  33. [33]
    A. Datta and S. Raychaudhuri, Vacuum stability constraints and LHC searches for a model with a universal extra dimension, Phys. Rev. D 87 (2013) 035018 [arXiv:1207.0476] [INSPIRE].
  34. [34]
    V.A. Rubakov and M.E. Shaposhnikov, Do we live inside a domain wall?, Phys. Lett. B 125 (1983) 136.Google Scholar
  35. [35]
    S. Coleman, Aspects of symmetry: selected erice lectures, Cambridge University Press, Cambridge U.K. (1985).Google Scholar
  36. [36]
    D.P. George, Domain-wall brane models of an infinite extra dimension, Ph.D. thesis, Melbourne University, Melbourne, Australia (2009).Google Scholar
  37. [37]
    A. Cordero-Cid, H. Novales-Sanchez and J.J. Toscano, The standard model with one universal extra dimension, Pramana 80 (2013) 369 [arXiv:1108.2926] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    G. Bhattacharyya, A. Datta, S.K. Majee and A. Raychaudhuri, Power law blitzkrieg in universal extra dimension scenarios, Nucl. Phys. B 760 (2007) 117 [hep-ph/0608208] [INSPIRE].
  39. [39]
    A. Freitas, K. Kong and D. Wiegand, Radiative corrections to masses and couplings in universal extra dimensions, JHEP 03 (2018) 093 [arXiv:1711.07526] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 3: a program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Semenov, LanHEP — A package for automatic generation of Feynman rules from the Lagrangian. Version 3.2, Comput. Phys. Commun. 201 (2016) 167 [arXiv:1412.5016] [INSPIRE].
  42. [42]
    A. Belyaev, M. Brown, J. Moreno and C. Papineau, Discovering Minimal Universal Extra Dimensions (MUED) at the LHC, JHEP 06 (2013) 080 [arXiv:1212.4858] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    Fermi-LAT collaboration, Searching for dark matter annihilation from Milky Way dwarf spheroidal galaxies with six years of Fermi Large Area Telescope data, Phys. Rev. Lett. 115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].
  44. [44]
    CMS collaboration, Search for dijet resonances in proton-proton collisions at \( \sqrt{s}=13 \) TeV and constraints on dark matter and other models, Phys. Lett. B 769 (2017) 520 [Erratum ibid. B 772 (2017) 882] [arXiv:1611.03568] [INSPIRE].
  45. [45]
    G. Burdman, B.A. Dobrescu and E. Ponton, Resonances from two universal extra dimensions, Phys. Rev. D 74 (2006) 075008 [hep-ph/0601186] [INSPIRE].
  46. [46]
    D. Choudhury, A. Datta, D.K. Ghosh and K. Ghosh, Exploring two universal extra dimensions at the CERN LHC, JHEP 04 (2012) 057 [arXiv:1109.1400] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    G. Burdman, O.J.P. Eboli and D. Spehler, Signals of two universal extra dimensions at the LHC, Phys. Rev. D 94 (2016) 095004 [arXiv:1607.02260] [INSPIRE].
  48. [48]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].
  49. [49]
    T. Appelquist and H.-U. Yee, Universal extra dimensions and the Higgs boson mass, Phys. Rev. D 67 (2003) 055002 [hep-ph/0211023] [INSPIRE].
  50. [50]
    T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev. D 64 (2001) 035002 [hep-ph/0012100] [INSPIRE].
  51. [51]
    Gfitter Group collaboration, The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J. C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Mathew Thomas Arun
    • 1
  • Debajyoti Choudhury
    • 2
  • Divya Sachdeva
    • 2
    Email author
  1. 1.Center for High Energy Physics, Indian Institute of ScienceBangaloreIndia
  2. 2.Department of Physics and AstrophysicsUniversity of DelhiDelhiIndia

Personalised recommendations