Advertisement

Journal of High Energy Physics

, 2019:224 | Cite as

Pseudo-Dirac Higgsino dark matter in GUT scale supersymmetry

  • V. Suryanarayana MummidiEmail author
  • Ketan M. Patel
Open Access
Regular Article - Theoretical Physics
  • 11 Downloads

Abstract

We investigate a scenario in which supersymmetry is broken at a scale MS ≥ 1014 GeV leaving only a pair of Higgs doublets, their superpartners (Higgsinos) and a gauge singlet fermion (singlino) besides the standard model fermions and gauge bosons at low energy. The Higgsino-singlino mixing induces a small splitting between the masses of the electrically neutral components of Higgsinos which otherwise remain almost degenerate in GUT scale supersymmetry. The lightest combination of them provides a viable thermal dark matter if the Higgsino mass scale is close to 1 TeV. The small mass splitting induced by the singlino turns the neutral components of Higgsinos into pseudo-Dirac fermions which successfully evade the constraints from the direct detection experiments if the singlino mass is ≲ 108 GeV. We analyse the constraints on the effective framework, arising from the stability of electroweak vacuum, observed mass and couplings of the Higgs, and the limits on the masses of the other scalars, by matching it with the next-to-minimal supersymmetric standard model at MS. It is found that the presence of singlino at an intermediate scale significantly improves the stability of electroweak vacuum and allows a stable or metastable vacuum for almost all the values of tan β while the observed Higgs mass together with the limit on the charged Higgs mass favours tan β ≲ 3.

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 487] [hep-ph/0406088] [INSPIRE].
  2. [2]
    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Vol. 1: Introduction, Cambridge Monographs on Mathematical Physics (1988) [INSPIRE].
  4. [4]
    T. Asaka, W. Buchmüller and L. Covi, Bulk and brane anomalies in six-dimensions, Nucl. Phys. B 648 (2003) 231 [hep-ph/0209144] [INSPIRE].
  5. [5]
    H.D. Kim and S. Raby, Unification in 5D SO(10), JHEP 01 (2003) 056 [hep-ph/0212348] [INSPIRE].
  6. [6]
    R. Kitano and T.-j. Li, Flavor hierarchy in SO(10) grand unified theories via five-dimensional wave function localization, Phys. Rev. D 67 (2003) 116004 [hep-ph/0302073] [INSPIRE].
  7. [7]
    T. Asaka, W. Buchmüller and L. Covi, Quarks and leptons between branes and bulk, Phys. Lett. B 563 (2003) 209 [hep-ph/0304142] [INSPIRE].
  8. [8]
    T. Kobayashi, S. Raby and R.-J. Zhang, Constructing 5-D orbifold grand unified theories from heterotic strings, Phys. Lett. B 593 (2004) 262 [hep-ph/0403065] [INSPIRE].
  9. [9]
    F. Feruglio, K.M. Patel and D. Vicino, Order and Anarchy hand in hand in 5D SO(10), JHEP 09 (2014) 095 [arXiv:1407.2913] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    F. Feruglio, K.M. Patel and D. Vicino, A realistic pattern of fermion masses from a five-dimensional SO(10) model, JHEP 09 (2015) 040 [arXiv:1507.00669] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    W. Buchmüller, M. Dierigl, F. Ruehle and J. Schweizer, Split symmetries, Phys. Lett. B 750 (2015) 615 [arXiv:1507.06819] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    W. Buchmüller and J. Schweizer, Flavor mixings in flux compactifications, Phys. Rev. D 95 (2017) 075024 [arXiv:1701.06935] [INSPIRE].ADSGoogle Scholar
  13. [13]
    W. Buchmüller and K.M. Patel, Flavor physics without flavor symmetries, Phys. Rev. D 97 (2018) 075019 [arXiv:1712.06862] [INSPIRE].ADSGoogle Scholar
  14. [14]
    G.F. Giudice and A. Strumia, Probing High-Scale and Split Supersymmetry with Higgs Mass Measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Riotto and A. Strumia, Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    P. Draper, G. Lee and C.E.M. Wagner, Precise estimates of the Higgs mass in heavy supersymmetry, Phys. Rev. D 89 (2014) 055023 [arXiv:1312.5743] [INSPIRE].ADSGoogle Scholar
  17. [17]
    S.A.R. Ellis and J.D. Wells, High-scale supersymmetry, the Higgs boson mass and gauge unification, Phys. Rev. D 96 (2017) 055024 [arXiv:1706.00013] [INSPIRE].ADSGoogle Scholar
  18. [18]
    E. Bagnaschi, F. Brümmer, W. Buchmüller, A. Voigt and G. Weiglein, Vacuum stability and supersymmetry at high scales with two Higgs doublets, JHEP 03 (2016) 158 [arXiv:1512.07761] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    V.S. Mummidi, V.P. K. and K.M. Patel, Effects of heavy neutrinos on vacuum stability in two-Higgs-doublet model with GUT scale supersymmetry, JHEP 08 (2018) 134 [arXiv:1805.08005] [INSPIRE].
  20. [20]
    G. Lee and C.E.M. Wagner, Higgs bosons in heavy supersymmetry with an intermediate m A, Phys. Rev. D 92 (2015) 075032 [arXiv:1508.00576] [INSPIRE].ADSGoogle Scholar
  21. [21]
    G. Servant and T.M.P. Tait, Elastic Scattering and Direct Detection of Kaluza-Klein Dark Matter, New J. Phys. 4 (2002) 99 [hep-ph/0209262] [INSPIRE].
  22. [22]
    N. Nagata and S. Shirai, Higgsino Dark Matter in High-Scale Supersymmetry, JHEP 01 (2015) 029 [arXiv:1410.4549] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S.P. Martin, A Supersymmetry primer, hep-ph/9709356 [INSPIRE].
  24. [24]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The Next-to-Minimal Supersymmetric Standard Model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    J. Bagger and E. Poppitz, Destabilizing divergences in supergravity coupled supersymmetric theories, Phys. Rev. Lett. 71 (1993) 2380 [hep-ph/9307317] [INSPIRE].
  26. [26]
    J.E. Kim and H.P. Nilles, The mu Problem and the Strong CP Problem, Phys. Lett. 138B (1984) 150 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].
  29. [29]
    J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [INSPIRE].
  30. [30]
    M. Cirelli, A. Strumia and M. Tamburini, Cosmology and Astrophysics of Minimal Dark Matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    P.J. Fox, G.D. Kribs and A. Martin, Split Dirac Supersymmetry: An Ultraviolet Completion of Higgsino Dark Matter, Phys. Rev. D 90 (2014) 075006 [arXiv:1405.3692] [INSPIRE].ADSGoogle Scholar
  32. [32]
    G.F. Giudice and A. Pomarol, Mass degeneracy of the Higgsinos, Phys. Lett. B 372 (1996) 253 [hep-ph/9512337] [INSPIRE].
  33. [33]
    R. Krall and M. Reece, Last Electroweak WIMP Standing: Pseudo-Dirac Higgsino Status and Compact Stars as Future Probes, Chin. Phys. C 42 (2018) 043105 [arXiv:1705.04843] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    K. Kowalska and E.M. Sessolo, The discreet charm of higgsino dark matter — a pocket review, Adv. High Energy Phys. 2018 (2018) 6828560 [arXiv:1802.04097] [INSPIRE].CrossRefGoogle Scholar
  35. [35]
    Fermi-LAT collaboration, Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data, Phys. Rev. Lett. 115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].
  36. [36]
    H.E.S.S. collaboration, Search for dark matter annihilations towards the inner Galactic halo from 10 years of observations with H.E.S.S, Phys. Rev. Lett. 117 (2016) 111301 [arXiv:1607.08142] [INSPIRE].
  37. [37]
    AMS collaboration, Antiproton Flux, Antiproton-to-Proton Flux Ratio and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station, Phys. Rev. Lett. 117 (2016) 091103 [INSPIRE].
  38. [38]
    J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: The Approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].
  39. [39]
    G. Isidori, G. Ridolfi and A. Strumia, On the metastability of the standard model vacuum, Nucl. Phys. B 609 (2001) 387 [hep-ph/0104016] [INSPIRE].
  40. [40]
    ATLAS and CMS collaborations, Combined Measurement of the Higgs Boson Mass in pp Collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
  41. [41]
    D. Chowdhury and O. Eberhardt, Update of Global Two-Higgs-Doublet Model Fits, JHEP 05 (2018) 161 [arXiv:1711.02095] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. Misiak and M. Steinhauser, Weak radiative decays of the B meson and bounds on \( {M}_{H^{\pm }} \) in the Two-Higgs-Doublet Model, Eur. Phys. J. C 77 (2017) 201 [arXiv:1702.04571] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. Broggio, E.J. Chun, M. Passera, K.M. Patel and S.K. Vempati, Limiting two-Higgs-doublet models, JHEP 11 (2014) 058 [arXiv:1409.3199] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    F. Staub, SARAH 4: A tool for (not only SUSY) model builders, Comput. Phys. Commun. 185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  45. [45]
    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  46. [46]
    H.E. Haber and R. Hempfling, The Renormalization group improved Higgs sector of the minimal supersymmetric model, Phys. Rev. D 48 (1993) 4280 [hep-ph/9307201] [INSPIRE].
  47. [47]
    S. Antusch, M. Drees, J. Kersten, M. Lindner and M. Ratz, Neutrino mass operator renormalization in two Higgs doublet models and the MSSM, Phys. Lett. B 525 (2002) 130 [hep-ph/0110366] [INSPIRE].
  48. [48]
    S. Antusch, M. Drees, J. Kersten, M. Lindner and M. Ratz, Neutrino mass operator renormalization revisited, Phys. Lett. B 519 (2001) 238 [hep-ph/0108005] [INSPIRE].
  49. [49]
    M. Berggren et al., Tackling light higgsinos at the ILC, Eur. Phys. J. C 73 (2013) 2660 [arXiv:1307.3566] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    P. Schwaller and J. Zurita, Compressed electroweakino spectra at the LHC, JHEP 03 (2014) 060 [arXiv:1312.7350] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    M. Low and L.-T. Wang, Neutralino dark matter at 14 TeV and 100 TeV, JHEP 08 (2014) 161 [arXiv:1404.0682] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    Z. Han, G.D. Kribs, A. Martin and A. Menon, Hunting quasidegenerate Higgsinos, Phys. Rev. D 89 (2014) 075007 [arXiv:1401.1235] [INSPIRE].ADSGoogle Scholar
  53. [53]
    S. Bobrovskyi, F. Brummer, W. Buchmüller and J. Hajer, Searching for light higgsinos with b-jets and missing leptons, JHEP 01 (2012) 122 [arXiv:1111.6005] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    Q.-F. Xiang, X.-J. Bi, P.-F. Yin and Z.-H. Yu, Searching for Singlino-Higgsino Dark Matter in the NMSSM, Phys. Rev. D 94 (2016) 055031 [arXiv:1606.02149] [INSPIRE].ADSGoogle Scholar
  55. [55]
    R. Mahbubani, P. Schwaller and J. Zurita, Closing the window for compressed Dark Sectors with disappearing charged tracks, JHEP 06 (2017) 119 [Erratum ibid. 10 (2017) 061] [arXiv:1703.05327] [INSPIRE].
  56. [56]
    S.D. Thomas and J.D. Wells, Phenomenology of Massive Vectorlike Doublet Leptons, Phys. Rev. Lett. 81 (1998) 34 [hep-ph/9804359] [INSPIRE].
  57. [57]
    D. Curtin, K. Deshpande, O. Fischer and J. Zurita, New Physics Opportunities for Long-Lived Particles at Electron-Proton Colliders, JHEP 07 (2018) 024 [arXiv:1712.07135] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    A. Giveon, L.J. Hall and U. Sarid, SU(5) unification revisited, Phys. Lett. B 271 (1991) 138 [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    K.M. Patel and P. Sharma, Forward-backward asymmetry in top quark production from light colored scalars in SO(10) model, JHEP 04 (2011) 085 [arXiv:1102.4736] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    Super-Kamiokande collaboration, Search for proton decay via pe + π 0 and pμ + π 0 in 0.31 megaton·years exposure of the Super-Kamiokande water Cherenkov detector, Phys. Rev. D 95 (2017) 012004 [arXiv:1610.03597] [INSPIRE].
  61. [61]
    LUX collaboration, Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].
  62. [62]
    XENON10 collaboration, Constraints on inelastic dark matter from XENON10, Phys. Rev. D 80 (2009) 115005 [arXiv:0910.3698] [INSPIRE].
  63. [63]
    XENON100 collaboration, Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].
  64. [64]
    XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
  65. [65]
    C. Savage, K. Freese and P. Gondolo, Annual Modulation of Dark Matter in the Presence of Streams, Phys. Rev. D 74 (2006) 043531 [astro-ph/0607121] [INSPIRE].
  66. [66]
    G. Duda, A. Kemper and P. Gondolo, Model Independent Form Factors for Spin Independent Neutralino-Nucleon Scattering from Elastic Electron Scattering Data, JCAP 04 (2007) 012 [hep-ph/0608035] [INSPIRE].
  67. [67]
    JLQCD collaboration, Nucleon strange quark content from N f = 2 + 1 lattice QCD with exact chiral symmetry, Phys. Rev. D 87 (2013) 034509 [arXiv:1208.4185] [INSPIRE].
  68. [68]
    J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89 (2014) 023524 [arXiv:1307.5458] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Indian Institute of Science Education and Research Mohali, Knowledge CityManauliIndia

Personalised recommendations