Advertisement

Journal of High Energy Physics

, 2019:222 | Cite as

Five-dimensional Super-Yang-Mills and its Kaluza-Klein tower

  • Andreas GustavssonEmail author
Open Access
Regular Article - Theoretical Physics
  • 12 Downloads

Abstract

We compactify the abelian 6d (1,0) tensor multiplet on a circle bundle, thus reducing the theory down to 5d SYM while keeping all the KK modes. This abelian classical field theory, when interpreted suitably, has a nonlocal superconformal symmetry. Furthermore, a nonabelian generalization, where all the KK modes are kept, is possible for the nonlocal superconformal symmetry, whereas for the local superconformal symmetry we can only realize a subgroup.

Keywords

Field Theories in Higher Dimensions M-Theory Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    K.-M. Lee and J.-H. Park, 5-D actions for 6-D selfdual tensor field theory, Phys. Rev. D 64 (2001) 105006 [hep-th/0008103] [INSPIRE].
  2. [2]
    D.V. Belyaev and P. van Nieuwenhuizen, Rigid supersymmetry with boundaries, JHEP 04 (2008) 008 [arXiv:0801.2377] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    E. Witten, Geometric Langlands From Six Dimensions, arXiv:0905.2720 [INSPIRE].
  4. [4]
    M.R. Douglas, On D = 5 super Yang-Mills theory and (2, 0) theory, JHEP 02 (2011) 011 [arXiv:1012.2880] [INSPIRE].
  5. [5]
    N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, M5-Branes, D4-branes and Quantum 5D super-Yang-Mills, JHEP 01 (2011) 083 [arXiv:1012.2882] [INSPIRE].
  6. [6]
    P.-M. Ho, K.-W. Huang and Y. Matsuo, A Non-Abelian Self-Dual Gauge Theory in 5 + 1 Dimensions, JHEP 07 (2011) 021 [arXiv:1104.4040] [INSPIRE].
  7. [7]
    H.-C. Kim, S. Kim, E. Koh, K. Lee and S. Lee, On instantons as Kaluza-Klein modes of M5-branes, JHEP 12 (2011) 031 [arXiv:1110.2175] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    H. Linander and F. Ohlsson, (2, 0) theory on circle fibrations, JHEP 01 (2012) 159 [arXiv:1111.6045] [INSPIRE].
  9. [9]
    F. Ohlsson, (2, 0) theory on Taub-NUT: A note on WZW models on singular fibrations, arXiv:1205.0694 [INSPIRE].
  10. [10]
    F. Bonetti, T.W. Grimm and S. Hohenegger, A Kaluza-Klein inspired action for chiral p-forms and their anomalies, Phys. Lett. B 720 (2013) 424 [arXiv:1206.1600] [INSPIRE].
  11. [11]
    F. Bonetti, T.W. Grimm and S. Hohenegger, Non-Abelian Tensor Towers and (2, 0) Superconformal Theories, JHEP 05 (2013) 129 [arXiv:1209.3017] [INSPIRE].
  12. [12]
    D. Bak and A. Gustavsson, M 5/D4 brane partition function on a circle bundle, JHEP 12 (2012) 099 [arXiv:1209.4391] [INSPIRE].
  13. [13]
    C. Cordova and D.L. Jafferis, Five-Dimensional Maximally Supersymmetric Yang-Mills in Supergravity Backgrounds, JHEP 10 (2017) 003 [arXiv:1305.2886] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    P.-M. Ho and Y. Matsuo, Aspects of Effective Theory for Multiple M5-Branes Compactified On Circle, JHEP 12 (2014) 154 [arXiv:1409.4060] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Gustavsson, A proposal for the non-Abelian tensor multiplet, arXiv:1810.01701 [INSPIRE].
  16. [16]
    A. Gustavsson, The non-Abelian tensor multiplet, JHEP 07 (2018) 084 [arXiv:1804.04035] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    N. Lambert and M. Owen, Charged Chiral Fermions from M5-Branes, JHEP 04 (2018) 051 [arXiv:1802.07766] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    U. Naseer, (1, 0) gauge theories on the six-sphere, SciPost Phys. 6 (2019) 002 [arXiv:1809.06272] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Physics DepartmentUniversity of SeoulSeoulKorea

Personalised recommendations