Advertisement

Journal of High Energy Physics

, 2019:219 | Cite as

Entanglement at a scale and renormalization monotones

  • Nima LashkariEmail author
Open Access
Regular Article - Theoretical Physics
  • 10 Downloads

Abstract

We study the information content of the reduced density matrix of a region in quantum field theory that cannot be recovered from its subregion density matrices. We reconstruct the density matrix from its subregions using two approaches: scaling maps and recovery maps. The vacuum of a scale-invariant field theory is the fixed point of both transformations. We define the entanglement of scaling and the entanglement of recovery as measures of entanglement that are intrinsic to the continuum limit. Both measures increase monotonically under the renormalization group flow. This provides a unifying information-theoretic structure underlying the different approaches to the renormalization monotones in various dimensions. Our analysis applies to non-relativistic quantum field theories as well the relativistic ones, however, in relativistic case, the entanglement of scaling can diverge.

Keywords

Field Theories in Higher Dimensions Nonperturbative Effects Renormalization Group 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.B. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2D field theory, JETP Lett. 43 (1986) 730 [Pisma Zh. Eksp. Teor. Fiz. 43 (1986) 565] [INSPIRE].
  2. [2]
    J.L. Cardy, Is there a c theorem in four-dimensions?, Phys. Lett. B 215 (1988) 749 [INSPIRE].
  3. [3]
    Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions, JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    H. Casini and M. Huerta, On the RG running of the entanglement entropy of a circle, Phys. Rev. D 85 (2012) 125016 [arXiv:1202.5650] [INSPIRE].
  5. [5]
    H. Casini, E. Teste and G. Torroba, Modular Hamiltonians on the null plane and the Markov property of the vacuum state, J. Phys. A 50 (2017) 364001 [arXiv:1703.10656] [INSPIRE].
  6. [6]
    H. Casini, E. Testé and G. Torroba, Markov property of the conformal field theory vacuum and the a theorem, Phys. Rev. Lett. 118 (2017) 261602 [arXiv:1704.01870] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    E.H. Lieb and M.B. Ruskai, Proof of the strong subadditivity of quantum-mechanical entropy, J. Math. Phys. 14 (1973) 1938 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    E.T. Jaynes, Information theory and statistical mechanics, Phys. Rev. 106 (1957) 620 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    P. Hayden, R. Jozsa, D. Petz and A. Winter, Structure of states which satisfy strong subadditivity of quantum entropy with equality, Commun. Math. Phys. 246 (2004) 359.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    O. Fawzi and R. Renner, Quantum conditional mutual information and approximate Markov chains, Commun. Math. Phys. 340 (2015) 575 [arXiv:1410.0664].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    M. Junge, R. Renner, D. Sutter, M.M. Wilde and A. Winter, Universal recovery maps and approximate sufficiency of quantum relative entropy, Annales Henri Poincaré 19 (2018) 2955 [arXiv:1509.07127] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    D. Petz, Quantum information theory and quantum statistics, Springer Science and Business Media, Germany (2007).Google Scholar
  13. [13]
    D. Poulin and M.B. Hastings, Markov entropy decomposition: a variational dual for quantum belief propagation, Phys. Rev. Lett. 106 (2011) 080403.Google Scholar
  14. [14]
    B. Czech, P. Hayden, N. Lashkari and B. Swingle, The information theoretic interpretation of the length of a curve, JHEP 06 (2015) 157 [arXiv:1410.1540] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    T. Faulkner, R.G. Leigh, O. Parrikar and H. Wang, Modular Hamiltonians for deformed half-spaces and the averaged null energy condition, JHEP 09 (2016) 038 [arXiv:1605.08072] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    T. Faulkner, R.G. Leigh and O. Parrikar, Shape dependence of entanglement entropy in conformal field theories, JHEP 04 (2016) 088 [arXiv:1511.05179] [INSPIRE].ADSMathSciNetGoogle Scholar
  17. [17]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 06 (2004) P06002 [hep-th/0405152] [INSPIRE].
  19. [19]
    A.C. Wall, A proof of the generalized second law for rapidly changing fields and arbitrary horizon slices, Phys. Rev. D 85 (2012) 104049 [Erratum ibid. D 87 (2013) 069904] [arXiv:1105.3445] [INSPIRE].
  20. [20]
    M.M. Roberts, Time evolution of entanglement entropy from a pulse, JHEP 12 (2012) 027 [arXiv:1204.1982] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    H. Casini, M. Huerta, R.C. Myers and A. Yale, Mutual information and the F-theorem, JHEP 10 (2015) 003 [arXiv:1506.06195] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    H. Casini, E. Teste and G. Torroba, Relative entropy and the RG flow, JHEP 03 (2017) 089 [arXiv:1611.00016] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    H. Liu and M. Mezei, A refinement of entanglement entropy and the number of degrees of freedom, JHEP 04 (2013) 162 [arXiv:1202.2070] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations