Advertisement

Journal of High Energy Physics

, 2019:216 | Cite as

Electroweak phase transition and Higgs phenomenology in the Georgi-Machacek model

  • Ruiyu Zhou
  • Wei Cheng
  • Xin Deng
  • Ligong BianEmail author
  • Yongcheng Wu
Open Access
Regular Article - Theoretical Physics
  • 15 Downloads

Abstract

In this work, we perform the electroweak phase transition study with the Georgi-Machacek model. We investigate both the one-step and two-step strong first order electroweak phase transition (SFOEWPT). The SFOEWPT viable parameter spaces could be tested by the future 14TeV LHC, HL-LHC, and ILC. The LHC Higgs signal strength measurements severely bound the SFOEWPT valid parameter spaces, a tinny region of the mixing angle between the neutral fields of the isospin-doublet and isospin-triplet scalars around α ∼ 0 can allow the two-step SFOEWPT to occur. The triplet vacuum expectation value (VEV) is crucial for both SFOEWPT and related Higgs phenomenology. The two-step SFOEWPT can be distinguished from the one-step SFOEWPT through the triple Higgs coupling searches and the low mass doubly charged Higgs searches at colliders.

Keywords

Beyond Standard Model Higgs Physics Thermal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.D. Sakharov, Violation of CP Invariance, C asymmetry and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [INSPIRE].Google Scholar
  2. [2]
    D.E. Morrissey and M.J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14 (2012) 125003 [arXiv:1206.2942] [INSPIRE].
  3. [3]
    N. Arkani-Hamed, T. Han, M. Mangano and L.-T. Wang, Physics opportunities of a 100 TeV proton-proton collider, Phys. Rept. 652 (2016) 1 [arXiv:1511.06495] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M.J. Ramsey-Musolf, P. Winslow and G. White, Color Breaking Baryogenesis, Phys. Rev. D 97 (2018) 123509 [arXiv:1708.07511] [INSPIRE].
  5. [5]
    A. Mazumdar and G. White, Cosmic phase transitions: their applications and experimental signatures, arXiv:1811.01948 [INSPIRE].
  6. [6]
    C. Caprini et al., Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions, JCAP 04 (2016) 001 [arXiv:1512.06239] [INSPIRE].
  7. [7]
    H. Kudoh, A. Taruya, T. Hiramatsu and Y. Himemoto, Detecting a gravitational-wave background with next-generation space interferometers, Phys. Rev. D 73 (2006) 064006 [gr-qc/0511145] [INSPIRE].
  8. [8]
    X. Gong et al., Descope of the ALIA mission, J. Phys. Conf. Ser. 610 (2015) 012011 [arXiv:1410.7296] [INSPIRE].
  9. [9]
    LIGO Scientific and Virgo collaborations, Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].
  10. [10]
    CEPC Study Group, CEPC Conceptual Design Report: Volume 2 — Physics & Detector, arXiv:1811.10545 [INSPIRE].
  11. [11]
    F. An et al., Precision Higgs Physics at CEPC, arXiv:1810.09037 [INSPIRE].
  12. [12]
    H. Baer et al., The International Linear Collider Technical Design Report — Volume 2: Physics, arXiv:1306.6352 [INSPIRE].
  13. [13]
    TLEP Design Study Working Group, First Look at the Physics Case of TLEP, JHEP 01 (2014) 164 [arXiv:1308.6176] [INSPIRE].
  14. [14]
    Future Circular Collider Study, https://fcc.web.cern.ch/Pages/default.aspx.
  15. [15]
    G. Ortona and M. Selvaggi, Higgs self-coupling @ 100 TeV, FCC Week 2018, Amsterdam, https://indico.cern.ch/event/656491/contributions/2925419/attachments/1630967/2599925/HHfccweekv4.pdf.
  16. [16]
    R. Contino et al., Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies, CERN Yellow Report (2017) 255 [arXiv:1606.09408] [INSPIRE].
  17. [17]
    H. Georgi and M. Machacek, Doubly charged Higgs bosons, Nucl. Phys. B 262 (1985) 463 [INSPIRE].
  18. [18]
    M.S. Chanowitz and M. Golden, Higgs Boson Triplets With M W = M Z cos θ ω, Phys. Lett. B 165 (1985) 105 [INSPIRE].
  19. [19]
    K. Hartling, K. Kumar and H.E. Logan, The decoupling limit in the Georgi-Machacek model, Phys. Rev. D 90 (2014) 015007 [arXiv:1404.2640] [INSPIRE].
  20. [20]
    C.-W. Chiang and K. Yagyu, Testing the custodial symmetry in the Higgs sector of the Georgi-Machacek model, JHEP 01 (2013) 026 [arXiv:1211.2658] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    C.-W. Chiang, A.-L. Kuo and K. Yagyu, Enhancements of weak gauge boson scattering processes at the CERN LHC, JHEP 10 (2013) 072 [arXiv:1307.7526] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    H.E. Logan and M.B. Reimer, Characterizing a benchmark scenario for heavy Higgs boson searches in the Georgi-Machacek model, Phys. Rev. D 96 (2017) 095029 [arXiv:1709.01883] [INSPIRE].
  23. [23]
    LHC Higgs Cross Section Working Group, Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [INSPIRE].
  24. [24]
    H.E. Logan and Y. Wu, Searching for the W γ decay of a charged Higgs boson, JHEP 11 (2018) 121 [arXiv:1809.09127] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    C.-W. Chiang and T. Yamada, Electroweak phase transition in Georgi-Machacek model, Phys. Lett. B 735 (2014) 295 [arXiv:1404.5182] [INSPIRE].
  26. [26]
    K. Hartling, K. Kumar and H.E. Logan, GMCALC: a calculator for the Georgi-Machacek model, arXiv:1412.7387 [INSPIRE].
  27. [27]
    A. Arhrib et al., The Higgs Potential in the Type II Seesaw Model, Phys. Rev. D 84 (2011) 095005 [arXiv:1105.1925] [INSPIRE].
  28. [28]
    C.-W. Chiang, A.-L. Kuo and K. Yagyu, One-loop renormalized Higgs boson vertices in the Georgi-Machacek model, Phys. Rev. D 98 (2018) 013008 [arXiv:1804.02633] [INSPIRE].
  29. [29]
    H.H. Patel and M.J. Ramsey-Musolf, Baryon Washout, Electroweak Phase Transition and Perturbation Theory, JHEP 07 (2011) 029 [arXiv:1101.4665] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    W. Chao, H.-K. Guo and J. Shu, Gravitational Wave Signals of Electroweak Phase Transition Triggered by Dark Matter, JCAP 09 (2017) 009 [arXiv:1702.02698] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    L. Bian and X. Liu, The dynamical FIMP Dark Matter and gravitational waves from phase transition with the scotogenic model, arXiv:1811.03279 [INSPIRE].
  32. [32]
    L. Bian and Y.-L. Tang, Thermally modified sterile neutrino portal dark matter and gravitational waves from phase transition: The Freeze-in case, JHEP 12 (2018) 006 [arXiv:1810.03172] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    S. Profumo, M.J. Ramsey-Musolf, C.L. Wainwright and P. Winslow, Singlet-catalyzed electroweak phase transitions and precision Higgs boson studies, Phys. Rev. D 91 (2015) 035018 [arXiv:1407.5342] [INSPIRE].
  34. [34]
    J.R. Espinosa, T. Konstandin and F. Riva, Strong Electroweak Phase Transitions in the Standard Model with a Singlet, Nucl. Phys. B 854 (2012) 592 [arXiv:1107.5441] [INSPIRE].
  35. [35]
    W. Cheng and L. Bian, From inflation to cosmological electroweak phase transition with a complex scalar singlet, Phys. Rev. D 98 (2018) 023524 [arXiv:1801.00662] [INSPIRE].
  36. [36]
    W. Cheng and L. Bian, Higgs inflation and cosmological electroweak phase transition with N scalars in the post-Higgs era, arXiv:1805.00199 [INSPIRE].
  37. [37]
    C.-Y. Chen, J. Kozaczuk and I.M. Lewis, Non-resonant Collider Signatures of a Singlet-Driven Electroweak Phase Transition, JHEP 08 (2017) 096 [arXiv:1704.05844] [INSPIRE].ADSGoogle Scholar
  38. [38]
    D. Curtin, P. Meade and C.-T. Yu, Testing Electroweak Baryogenesis with Future Colliders, JHEP 11 (2014) 127 [arXiv:1409.0005] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Jiang, L. Bian, W. Huang and J. Shu, Impact of a complex singlet: Electroweak baryogenesis and dark matter, Phys. Rev. D 93 (2016) 065032 [arXiv:1502.07574] [INSPIRE].
  40. [40]
    B. Grzadkowski and D. Huang, Spontaneous CP -Violating Electroweak Baryogenesis and Dark Matter from a Complex Singlet Scalar, JHEP 08 (2018) 135 [arXiv:1807.06987] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    B. Li, Z.-L. Han and Y. Liao, Higgs production at future e + e colliders in the Georgi-Machacek model, JHEP 02 (2018) 007 [arXiv:1710.00184] [INSPIRE].
  42. [42]
    C.-W. Chiang, A.-L. Kuo and T. Yamada, Searches of exotic Higgs bosons in general mass spectra of the Georgi-Machacek model at the LHC, JHEP 01 (2016) 120 [arXiv:1511.00865] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    C.-W. Chiang, G. Cottin and O. Eberhardt, Global fits in the Georgi-Machacek model, Phys. Rev. D 99 (2019) 015001 [arXiv:1807.10660] [INSPIRE].
  44. [44]
    D. Das and I. Saha, Cornering variants of the Georgi-Machacek model using Higgs precision data, Phys. Rev. D 98 (2018) 095010 [arXiv:1811.00979] [INSPIRE].
  45. [45]
    ATLAS collaboration, Search for resonant W Z production in the fully leptonic final state in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 787 (2018) 68 [arXiv:1806.01532] [INSPIRE].
  46. [46]
    CMS collaboration, Search for Charged Higgs Bosons Produced via Vector Boson Fusion and Decaying into a Pair of W and Z Bosons Using pp Collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. Lett. 119 (2017) 141802 [arXiv:1705.02942] [INSPIRE].
  47. [47]
    CMS collaboration, Measurement of electroweak WZ production and search for new physics in pp collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-SMP-18-001.
  48. [48]
    ATLAS collaboration, Search for W W/W Z resonance production in ℓνqq final states in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 03 (2018) 042 [arXiv:1710.07235] [INSPIRE].
  49. [49]
    ATLAS collaboration, Search for heavy resonances decaying into W W in the eνμν final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 24 [arXiv:1710.01123] [INSPIRE].
  50. [50]
    ATLAS collaboration, Search for heavy ZZ resonances in the ℓ + + and \( {\ell}^{+}{\ell}^{-}\nu \overline{\nu} \) final states using proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 293 [arXiv:1712.06386] [INSPIRE].
  51. [51]
    ATLAS collaboration, Searches for heavy ZZ and ZW resonances in the ℓℓqq and ννqq final states in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 03 (2018) 009 [arXiv:1708.09638] [INSPIRE].
  52. [52]
    J. Chang, C.-R. Chen and C.-W. Chiang, Higgs boson pair productions in the Georgi-Machacek model at the LHC, JHEP 03 (2017) 137 [arXiv:1701.06291] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    CMS collaboration, Observation of electroweak production of same-sign W boson pairs in the two jet and two same-sign lepton final state in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. Lett. 120 (2018) 081801 [arXiv:1709.05822] [INSPIRE].
  54. [54]
    S. Blasi, S. De Curtis and K. Yagyu, Effects of custodial symmetry breaking in the Georgi-Machacek model at high energies, Phys. Rev. D 96 (2017) 015001 [arXiv:1704.08512] [INSPIRE].
  55. [55]
    B. Keeshan, H.E. Logan and T. Pilkington, Custodial symmetry violation in the Georgi-Machacek model, arXiv:1807.11511 [INSPIRE].
  56. [56]
    ATLAS collaboration, Search for Scalar Diphoton Resonances in the Mass Range 65-600 GeV with the ATLAS Detector in pp Collision Data at \( \sqrt{s}=8 \) TeV, Phys. Rev. Lett. 113 (2014) 171801 [arXiv:1407.6583] [INSPIRE].
  57. [57]
    ACME collaboration, Improved limit on the electric dipole moment of the electron, Nature 562 (2018) 355 [INSPIRE].
  58. [58]
    J. Shu and Y. Zhang, Impact of a CP-violating Higgs Sector: From LHC to Baryogenesis, Phys. Rev. Lett. 111 (2013) 091801 [arXiv:1304.0773] [INSPIRE].
  59. [59]
    L. Bian, T. Liu and J. Shu, Cancellations Between Two-Loop Contributions to the Electron Electric Dipole Moment with a CP-Violating Higgs Sector, Phys. Rev. Lett. 115 (2015) 021801 [arXiv:1411.6695] [INSPIRE].
  60. [60]
    L. Bian and N. Chen, Cancellation mechanism in the predictions of electric dipole moments, Phys. Rev. D 95 (2017) 115029 [arXiv:1608.07975] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsChongqing UniversityChongqingChina
  2. 2.Department of PhysicsChung-Ang UniversitySeoulKorea
  3. 3.Ottawa-Carleton Institute for PhysicsCarleton UniversityOttawaCanada

Personalised recommendations