Journal of High Energy Physics

, 2019:214 | Cite as

Near-extremal black holes at late times, backreacted

  • Shahar HadarEmail author
Open Access
Regular Article - Theoretical Physics


Black holes display universal behavior near extremality. One such feature is the late-time blowup of derivatives of linearized perturbations across the horizon. For generic initial data, this instability is regulated by backreaction, and the final state is a near-extremal black hole. The aim of this paper is to study the late time behavior of such black holes analytically using the weakly broken conformal symmetry of their near-horizon region. In particular, gravitational backreaction is accounted for within the Jackiw-Teitelboim model for near-horizon, near-extremal dynamics coupled to bulk matter.


Black Holes 2D Gravity Space-Time Symmetries 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    S.E. Gralla, A. Lupsasca and A. Strominger, Near-horizon Kerr Magnetosphere, Phys. Rev. D 93 (2016) 104041 [arXiv:1602.01833] [INSPIRE].
  3. [3]
    S.E. Gralla and P. Zimmerman, Scaling and Universality in Extremal Black Hole Perturbations, JHEP 06 (2018) 061 [arXiv:1804.04753] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    J.M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation, JHEP 02 (1999) 011 [hep-th/9812073] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT Correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [INSPIRE].
  6. [6]
    S. Hadar, A.P. Porfyriadis and A. Strominger, Gravity Waves from Extreme-Mass-Ratio Plunges into Kerr Black Holes, Phys. Rev. D 90 (2014) 064045 [arXiv:1403.2797] [INSPIRE].
  7. [7]
    S.E. Gralla, S.A. Hughes and N. Warburton, Inspiral into Gargantua, Class. Quant. Grav. 33 (2016) 155002 [arXiv:1603.01221] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    S.E. Gralla, A. Lupsasca and A. Strominger, Observational Signature of High Spin at the Event Horizon Telescope, Mon. Not. Roy. Astron. Soc. 475 (2018) 3829 [arXiv:1710.11112] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    D. Gates, D. Kapec, A. Lupsasca, Y. Shi and A. Strominger, Polarization Whorls from M87 at the Event Horizon Telescope, arXiv:1809.09092 [INSPIRE].
  10. [10]
    S. Aretakis, Stability and Instability of Extreme Reissner-Nordström Black Hole Spacetimes for Linear Scalar Perturbations I, Commun. Math. Phys. 307 (2011) 17 [arXiv:1110.2007] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    S. Aretakis, Stability and Instability of Extreme Reissner-Nordstrom Black Hole Spacetimes for Linear Scalar Perturbations II, Annales Henri Poincaré 12 (2011) 1491 [arXiv:1110.2009] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    S. Aretakis, Horizon Instability of Extremal Black Holes, Adv. Theor. Math. Phys. 19 (2015) 507 [arXiv:1206.6598] [INSPIRE].
  13. [13]
    S. Aretakis, A note on instabilities of extremal black holes under scalar perturbations from afar, Class. Quant. Grav. 30 (2013) 095010 [arXiv:1212.1103] [INSPIRE].
  14. [14]
    J. Lucietti, K. Murata, H.S. Reall and N. Tanahashi, On the horizon instability of an extreme Reissner-Nordström black hole, JHEP 03 (2013) 035 [arXiv:1212.2557] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    M. Casals, S.E. Gralla and P. Zimmerman, Horizon Instability of Extremal Kerr Black Holes: Nonaxisymmetric Modes and Enhanced Growth Rate, Phys. Rev. D 94 (2016) 064003 [arXiv:1606.08505] [INSPIRE].
  16. [16]
    S.E. Gralla, A. Zimmerman and P. Zimmerman, Transient Instability of Rapidly Rotating Black Holes, Phys. Rev. D 94 (2016) 084017 [arXiv:1608.04739] [INSPIRE].
  17. [17]
    P. Zimmerman, Horizon instability of extremal Reissner-Nordström black holes to charged perturbations, Phys. Rev. D 95 (2017) 124032 [arXiv:1612.03172] [INSPIRE].
  18. [18]
    J. Lucietti and H.S. Reall, Gravitational instability of an extreme Kerr black hole, Phys. Rev. D 86 (2012) 104030 [arXiv:1208.1437] [INSPIRE].
  19. [19]
    S. Aretakis, The Wave Equation on Extreme Reissner-Nordstrom Black Hole Spacetimes: Stability and Instability Results, arXiv:1006.0283 [INSPIRE].
  20. [20]
    Y. Angelopoulos, S. Aretakis and D. Gajic, Late-time asymptotics for the wave equation on extremal Reissner-Nordström backgrounds, arXiv:1807.03802 [INSPIRE].
  21. [21]
    S. Hadar and H.S. Reall, Is there a breakdown of effective field theory at the horizon of an extremal black hole?, JHEP 12 (2017) 062 [arXiv:1709.09668] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    K. Murata, H.S. Reall and N. Tanahashi, What happens at the horizon(s) of an extreme black hole?, Class. Quant. Grav. 30 (2013) 235007 [arXiv:1307.6800] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
  24. [24]
    A. Kitaev, A simple model of quantum holography, Seminar at KITP (2015).Google Scholar
  25. [25]
    S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
  26. [26]
    R. Jackiw, Lower Dimensional Gravity, Nucl. Phys. B 252 (1985) 343 [INSPIRE].
  27. [27]
    C. Teitelboim, Gravitation and Hamiltonian Structure in Two Space-Time Dimensions, Phys. Lett. B 126 (1983) 41 [INSPIRE].
  28. [28]
    K. Jensen, Chaos in AdS 2 Holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].
  29. [29]
    J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS 2 backreaction and holography, JHEP 07 (2016) 139 [arXiv:1606.03438] [INSPIRE].
  30. [30]
    A. Almheiri and J. Polchinski, Models of AdS 2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].
  31. [31]
    P. Nayak, A. Shukla, R.M. Soni, S.P. Trivedi and V. Vishal, On the Dynamics of Near-Extremal Black Holes, JHEP 09 (2018) 048 [arXiv:1802.09547] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    U. Moitra, S.P. Trivedi and V. Vishal, Near-Extremal Near-Horizons, arXiv:1808.08239 [INSPIRE].
  33. [33]
    G. Sárosi, AdS 2 holography and the SYK model, PoS(Modave2017)001 (2018) [arXiv:1711.08482] [INSPIRE].
  34. [34]
    A.P. Porfyriadis, Scattering of gravitational and electromagnetic waves off AdS 2 × S 2 in extreme Reissner-Nordstrom, JHEP 07 (2018) 064 [arXiv:1805.12409] [INSPIRE].
  35. [35]
    A.P. Porfyriadis, Near-AdS 2 perturbations and the connection with near-extreme Reissner-Nordstrom, arXiv:1806.07097 [INSPIRE].
  36. [36]
    A. Ori, Late-time tails in extremal Reissner-Nordstrom spacetime, arXiv:1305.1564 [INSPIRE].
  37. [37]
    S. Bhattacharjee, B. Chakrabarty, D.D.K. Chow, P. Paul and A. Virmani, On late time tails in an extreme Reissner-Nordström black hole: frequency domain analysis, Class. Quant. Grav. 35 (2018) 205002 [arXiv:1805.10655] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    O.J.C. Dias, H.S. Reall and J.E. Santos, Strong cosmic censorship for charged de Sitter black holes with a charged scalar field, arXiv:1808.04832 [INSPIRE].
  40. [40]
    V. Cardoso, J.L. Costa, K. Destounis, P. Hintz and A. Jansen, Quasinormal modes and Strong Cosmic Censorship, Phys. Rev. Lett. 120 (2018) 031103 [arXiv:1711.10502] [INSPIRE].
  41. [41]
    S.E. Gralla and P. Zimmerman, Critical Exponents of Extremal Kerr Perturbations, Class. Quant. Grav. 35 (2018) 095002 [arXiv:1711.00855] [INSPIRE].
  42. [42]
    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].
  43. [43]
    J. Maldacena, D. Stanford and Z. Yang, Diving into traversable wormholes, Fortsch. Phys. 65 (2017) 1700034 [arXiv:1704.05333] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    D. Harlow and D. Jafferis, The Factorization Problem in Jackiw-Teitelboim Gravity, arXiv:1804.01081 [INSPIRE].
  45. [45]
    V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Center for the Fundamental Laws of NatureHarvard UniversityCambridgeU.S.A.
  2. 2.Max Planck Institute for Gravitational Physics (Albert Einstein Institute)Potsdam-GolmGermany

Personalised recommendations