Advertisement

Journal of High Energy Physics

, 2019:208 | Cite as

Perturbativity constraints on U(1)BL and left-right models and implications for heavy gauge boson searches

  • Garv Chauhan
  • P. S. Bhupal Dev
  • Rabindra N. Mohapatra
  • Yongchao ZhangEmail author
Open Access
Regular Article - Theoretical Physics
  • 15 Downloads

Abstract

We derive perturbativity constraints on beyond standard model scenarios with extra gauge groups, such as SU(2) or U(1), whose generators contribute to the electric charge, and show that there are both upper and lower limits on the additional gauge couplings, from the requirement that the couplings remain perturbative up to the grand unification theory (GUT) scale. This leads to stringent constraints on the masses of the corresponding gauge bosons and their collider phenomenology. We specifically focus on the models based on \( SU{(2)}_L \times U{(1)}_{I_{3R}} \times U{(1)}_{B-L} \) and the left-right symmetric models based on SU(2)L × SU(2)R × U(1)B − L, and discuss the implications of the perturbativity constraints for new gauge boson searches at current and future colliders. In particular, we find that the stringent flavor constraints in the scalar sector of left-right model set a lower bound on the right-handed scale vR ≳ 10 TeV, if all the gauge and quartic couplings are to remain perturbative up to the GUT scale. This precludes the prospects of finding the ZR boson in the left-right model at the LHC, even in the high-luminosity phase, and leaves only a narrow window for the WR boson. A much broader allowed parameter space, with the right-handed scale vR up to ≃ 87 TeV, could be probed at the future 100 TeV collider.

Keywords

Beyond Standard Model Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    H. Georgi, The State of the Art in Gauge Theories, AIP Conf. Proc. 23 (1975) 575.ADSCrossRefGoogle Scholar
  2. [2]
    H. Fritzsch and P. Minkowski, Unified Interactions of Leptons and Hadrons, Annals Phys. 93 (1975) 193 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    M.S. Chanowitz, J.R. Ellis and M.K. Gaillard, The Price of Natural Flavor Conservation in Neutral Weak Interactions, Nucl. Phys. B 128 (1977) 506 [INSPIRE].
  4. [4]
    H. Georgi and D.V. Nanopoulos, Ordinary Predictions from Grand Principles: T Quark Mass in O(10), Nucl. Phys. B 155 (1979) 52 [INSPIRE].
  5. [5]
    K.S. Babu and R.N. Mohapatra, Predictive neutrino spectrum in minimal SO(10) grand unification, Phys. Rev. Lett. 70 (1993) 2845 [hep-ph/9209215] [INSPIRE].
  6. [6]
    R.E. Marshak and R.N. Mohapatra, Quark-Lepton Symmetry and B-L as the U(1) Generator of the Electroweak Symmetry Group, Phys. Lett. B 91 (1980) 222 [INSPIRE].
  7. [7]
    R.N. Mohapatra and R.E. Marshak, Local B-L Symmetry of Electroweak Interactions, Majorana Neutrinos and Neutron Oscillations, Phys. Rev. Lett. 44 (1980) 1316 [Erratum ibid. 44 (1980) 1643] [INSPIRE].
  8. [8]
    N.G. Deshpande and D. Iskandar, Study of the Gauge Group SU(2)L × T(3)R × U(1) − V , Nucl. Phys. B 167 (1980) 223 [INSPIRE].
  9. [9]
    P. Galison and A. Manohar, Two Z’s or not two Z’s?, Phys. Lett. B 136 (1984) 279 [INSPIRE].
  10. [10]
    J.C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703] [INSPIRE].
  11. [11]
    R.N. Mohapatra and J.C. Pati, A Natural Left-Right Symmetry, Phys. Rev. D 11 (1975) 2558 [INSPIRE].
  12. [12]
    G. Senjanović and R.N. Mohapatra, Exact Left-Right Symmetry and Spontaneous Violation of Parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].
  13. [13]
    P. Minkowski, μeγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
  14. [14]
    R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].
  16. [16]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].
  17. [17]
    S.L. Glashow, The Future of Elementary Particle Physics, NATO Sci. Ser. B 61 (1980) 687.Google Scholar
  18. [18]
    L.B. Okun, Limits of electrodynamics: paraphotons?, Sov. Phys. JETP 56 (1982) 502 [INSPIRE].
  19. [19]
    B. Holdom, Two U(1) s and Epsilon Charge Shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].
  20. [20]
    R. Foot and X.-G. He, Comment on Z Z-prime mixing in extended gauge theories, Phys. Lett. B 267 (1991) 509 [INSPIRE].
  21. [21]
    W. Buchmüller, C. Greub and P. Minkowski, Neutrino masses, neutral vector bosons and the scale of B-L breaking, Phys. Lett. B 267 (1991) 395 [INSPIRE].
  22. [22]
    L. Basso, Phenomenology of the minimal B-L extension of the Standard Model at the LHC, Ph.D. Thesis, Southampton University, Southampton U.K. (2011) [arXiv:1106.4462] [INSPIRE].
  23. [23]
    T. Appelquist, B.A. Dobrescu and A.R. Hopper, Nonexotic neutral gauge bosons, Phys. Rev. D 68 (2003) 035012 [hep-ph/0212073] [INSPIRE].
  24. [24]
    M. Carena, A. Daleo, B.A. Dobrescu and T.M.P. Tait, Z gauge bosons at the Tevatron, Phys. Rev. D 70 (2004) 093009 [hep-ph/0408098] [INSPIRE].
  25. [25]
    A. Das, S. Oda, N. Okada and D.-s. Takahashi, Classically conformal U(1) extended standard model, electroweak vacuum stability and LHC Run-2 bounds, Phys. Rev. D 93 (2016) 115038 [arXiv:1605.01157] [INSPIRE].
  26. [26]
    S. Oda, N. Okada and D.-s. Takahashi, Right-handed neutrino dark matter in the classically conformal U(1) extended standard model, Phys. Rev. D 96 (2017) 095032 [arXiv:1704.05023] [INSPIRE].
  27. [27]
    J. Alexander et al., Dark Sectors 2016 Workshop: Community Report, 2016, arXiv:1608.08632, http://lss.fnal.gov/archive/2016/conf/fermilab-conf-16-421.pdf [INSPIRE].
  28. [28]
    P. Langacker, The Physics of Heavy Z Gauge Bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].
  29. [29]
    CMS collaboration, Search for a heavy right-handed W boson and a heavy neutrino in events with two same-flavor leptons and two jets at \( \sqrt{s}=13 \) TeV, JHEP 05 (2018) 148 [arXiv:1803.11116] [INSPIRE].
  30. [30]
    ATLAS collaboration, Search for heavy Majorana or Dirac neutrinos and right-handed W gauge bosons in final states with two charged leptons and two jets at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 01 (2019) 016 [arXiv:1809.11105] [INSPIRE].
  31. [31]
    ATLAS collaboration, Search for new high-mass resonances in the dilepton final state using proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-045 (2016).
  32. [32]
    CMS collaboration, Search for a high-mass resonance decaying into a dilepton final state in 13 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-16-031 (2016).
  33. [33]
    A. Ferrari et al., Sensitivity study for new gauge bosons and right-handed Majorana neutrinos in pp collisions at s = 14-TeV, Phys. Rev. D 62 (2000) 013001 [INSPIRE].
  34. [34]
    T.G. Rizzo, Exploring new gauge bosons at a 100 TeV collider, Phys. Rev. D 89 (2014) 095022 [arXiv:1403.5465] [INSPIRE].
  35. [35]
    P.S.B. Dev, D. Kim and R.N. Mohapatra, Disambiguating Seesaw Models using Invariant Mass Variables at Hadron Colliders, JHEP 01 (2016) 118 [arXiv:1510.04328] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Mitra, R. Ruiz, D.J. Scott and M. Spannowsky, Neutrino Jets from High-Mass W R Gauge Bosons in TeV-Scale Left-Right Symmetric Models, Phys. Rev. D 94 (2016) 095016 [arXiv:1607.03504] [INSPIRE].
  37. [37]
    R. Ruiz, Lepton Number Violation at Colliders from Kinematically Inaccessible Gauge Bosons, Eur. Phys. J. C 77 (2017) 375 [arXiv:1703.04669] [INSPIRE].
  38. [38]
    N. Arkani-Hamed, T. Han, M. Mangano and L.-T. Wang, Physics opportunities of a 100 TeV proton-proton collider, Phys. Rept. 652 (2016) 1 [arXiv:1511.06495] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    T. Golling et al., Physics at a 100 TeV pp collider: beyond the Standard Model phenomena, CERN Yellow Report (2017) 441 [arXiv:1606.00947] [INSPIRE].
  40. [40]
    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  41. [41]
    G. Ecker, W. Grimus and H. Neufeld, Higgs Induced Flavor Changing Neutral Interactions in SU(2)L × SU(2)R × U(1), Phys. Lett. B 127 (1983) 365 [Erratum ibid. B 132 (1983) 467] [INSPIRE].
  42. [42]
    Y. Zhang, H. An, X. Ji and R.N. Mohapatra, General CP-violation in Minimal Left-Right Symmetric Model and Constraints on the Right-Handed Scale, Nucl. Phys. B 802 (2008) 247 [arXiv:0712.4218] [INSPIRE].
  43. [43]
    A. Maiezza, M. Nemevšek, F. Nesti and G. Senjanović, Left-Right Symmetry at LHC, Phys. Rev. D 82 (2010) 055022 [arXiv:1005.5160] [INSPIRE].
  44. [44]
    S. Bertolini, A. Maiezza and F. Nesti, Present and Future K and B Meson Mixing Constraints on TeV Scale Left-Right Symmetry, Phys. Rev. D 89 (2014) 095028 [arXiv:1403.7112] [INSPIRE].
  45. [45]
    M. Singer, J.W.F. Valle and J. Schechter, Canonical Neutral Current Predictions From the Weak Electromagnetic Gauge Group SU(3) × U(1), Phys. Rev. D 22 (1980) 738 [INSPIRE].
  46. [46]
    P.H. Frampton, Chiral dilepton model and the flavor question, Phys. Rev. Lett. 69 (1992) 2889 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    F. Pisano and V. Pleitez, An SU(3) × U(1) model for electroweak interactions, Phys. Rev. D 46 (1992) 410 [hep-ph/9206242] [INSPIRE].
  48. [48]
    R. Foot, O.F. Hernandez, F. Pisano and V. Pleitez, Lepton masses in an SU(3) − L × U(1) − N gauge model, Phys. Rev. D 47 (1993) 4158 [hep-ph/9207264] [INSPIRE].
  49. [49]
    A.G. Dias, C.A. de S. Pires and P.S. Rodrigues da Silva, The Left-Right SU(3)L × SU(3)R × U(1)X Model with Light, keV and Heavy Neutrinos, Phys. Rev. D 82 (2010) 035013 [arXiv:1003.3260] [INSPIRE].
  50. [50]
    M. Reig, J.W.F. Valle and C.A. Vaquera-Araujo, Unifying left-right symmetry and 331 electroweak theories, Phys. Lett. B 766 (2017) 35 [arXiv:1611.02066] [INSPIRE].
  51. [51]
    M. Reig, J.W.F. Valle and C.A. Vaquera-Araujo, Three-family left-right symmetry with low-scale seesaw mechanism, JHEP 05 (2017) 100 [arXiv:1611.04571] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    D. Borah and S. Patra, Universal seesaw and 0νββ in new 3331 left-right symmetric model, Phys. Lett. B 771 (2017) 318 [arXiv:1701.08675] [INSPIRE].
  53. [53]
    C. Hati, S. Patra, M. Reig, J.W.F. Valle and C.A. Vaquera-Araujo, Towards gauge coupling unification in left-right symmetric SU(3)c × SU(3)L × SU(3)R × U(1)X theories, Phys. Rev. D 96 (2017) 015004 [arXiv:1703.09647] [INSPIRE].
  54. [54]
    Z.G. Berezhiani, The Weak Mixing Angles in Gauge Models with Horizontal Symmetry: A New Approach to Quark and Lepton Masses, Phys. Lett. B 129 (1983) 99 [INSPIRE].
  55. [55]
    D. Chang and R.N. Mohapatra, Small and Calculable Dirac Neutrino Mass, Phys. Rev. Lett. 58 (1987) 1600 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    S. Rajpoot, See-saw masses for quarks and leptons in an ambidextrous electroweak interaction model, Mod. Phys. Lett. A 2 (1987) 307 [Erratum ibid. A 2 (1987) 541] [INSPIRE].
  57. [57]
    A. Davidson and K.C. Wali, Universal Seesaw Mechanism?, Phys. Rev. Lett. 59 (1987) 393 [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    K.S. Babu and R.N. Mohapatra, CP Violation in Seesaw Models of Quark Masses, Phys. Rev. Lett. 62 (1989) 1079 [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    K.S. Babu and R.N. Mohapatra, A Solution to the Strong CP Problem Without an Axion, Phys. Rev. D 41 (1990) 1286 [INSPIRE].
  60. [60]
    R.N. Mohapatra and Y. Zhang, TeV Scale Universal Seesaw, Vacuum Stability and Heavy Higgs, JHEP 06 (2014) 072 [arXiv:1401.6701] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    P.S.B. Dev, R.N. Mohapatra and Y. Zhang, Quark Seesaw, Vectorlike Fermions and Diphoton Excess, JHEP 02 (2016) 186 [arXiv:1512.08507] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    F.F. Deppisch, C. Hati, S. Patra, P. Pritimita and U. Sarkar, Neutrinoless double beta decay in left-right symmetric models with a universal seesaw mechanism, Phys. Rev. D 97 (2018) 035005 [arXiv:1701.02107] [INSPIRE].
  63. [63]
    A. Patra and S.K. Rai, Lepton-specific universal seesaw model with left-right symmetry, Phys. Rev. D 98 (2018) 015033 [arXiv:1711.00627] [INSPIRE].
  64. [64]
    P.S. Bhupal Dev, R.N. Mohapatra and Y. Zhang, Naturally stable right-handed neutrino dark matter, JHEP 11 (2016) 077 [arXiv:1608.06266] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    P.S.B. Dev, R.N. Mohapatra and Y. Zhang, Heavy right-handed neutrino dark matter in left-right models, Mod. Phys. Lett. A 32 (2017) 1740007 [arXiv:1610.05738] [INSPIRE].
  66. [66]
    J.L. Hewett and T.G. Rizzo, Low-Energy Phenomenology of Superstring Inspired E 6 Models, Phys. Rept. 183 (1989) 193 [INSPIRE].
  67. [67]
    H. Georgi and S. Weinberg, Neutral Currents in Expanded Gauge Theories, Phys. Rev. D 17 (1978) 275 [INSPIRE].
  68. [68]
    P.S.B. Dev, R.N. Mohapatra and Y. Zhang, Probing the Higgs Sector of the Minimal Left-Right Symmetric Model at Future Hadron Colliders, JHEP 05 (2016) 174 [arXiv:1602.05947] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    J. Brehmer, J. Hewett, J. Kopp, T. Rizzo and J. Tattersall, Symmetry Restored in Dibosons at the LHC?, JHEP 10 (2015) 182 [arXiv:1507.00013] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    P.S.B. Dev, R.N. Mohapatra and Y. Zhang, Long Lived Light Scalars as Probe of Low Scale Seesaw Models, Nucl. Phys. B 923 (2017) 179 [arXiv:1703.02471] [INSPIRE].
  71. [71]
    P.S.B. Dev, R.N. Mohapatra and Y. Zhang, Leptogenesis constraints on BL breaking Higgs boson in TeV scale seesaw models, JHEP 03 (2018) 122 [arXiv:1711.07634] [INSPIRE].
  72. [72]
    S. Patra, F.S. Queiroz and W. Rodejohann, Stringent Dilepton Bounds on Left-Right Models using LHC data, Phys. Lett. B 752 (2016) 186 [arXiv:1506.03456] [INSPIRE].
  73. [73]
    M. Lindner, F.S. Queiroz and W. Rodejohann, Dilepton bounds on left-right symmetry at the LHC run II and neutrinoless double beta decay, Phys. Lett. B 762 (2016) 190 [arXiv:1604.07419] [INSPIRE].
  74. [74]
    R. Diener, S. Godfrey and T.A.W. Martin, Unravelling an Extra Neutral Gauge Boson at the LHC using Third Generation Fermions, Phys. Rev. D 83 (2011) 115008 [arXiv:1006.2845] [INSPIRE].
  75. [75]
    S. Godfrey and T. Martin, Z’ Discovery Reach at Future Hadron Colliders: A Snowmass White Paper, in Proceedings of 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), Minneapolis U.S.A. (2013) [arXiv:1309.1688] [INSPIRE].
  76. [76]
    W. Konetschny and W. Kummer, Nonconservation of Total Lepton Number with Scalar Bosons, Phys. Lett. B 70 (1977) 433 [INSPIRE].
  77. [77]
    M. Magg and C. Wetterich, Neutrino Mass Problem and Gauge Hierarchy, Phys. Lett. B 94 (1980) 61 [INSPIRE].
  78. [78]
    J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].
  79. [79]
    T.P. Cheng and L.-F. Li, Neutrino Masses, Mixings and Oscillations in SU(2) × U(1) Models of Electroweak Interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].
  80. [80]
    R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].
  81. [81]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton Lifetime and Fermion Masses in an SO(10) Model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].
  82. [82]
    F.F. Deppisch, T.E. Gonzalo, S. Patra, N. Sahu and U. Sarkar, Double beta decay, lepton flavor violation and collider signatures of left-right symmetric models with spontaneous D-parity breaking, Phys. Rev. D 91 (2015) 015018 [arXiv:1410.6427] [INSPIRE].
  83. [83]
    P.S. Bhupal Dev and R.N. Mohapatra, Unified explanation of the eejj, diboson and dijet resonances at the LHC, Phys. Rev. Lett. 115 (2015) 181803 [arXiv:1508.02277] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    D. Chang, R.N. Mohapatra and M.K. Parida, Decoupling Parity and SU(2)R Breaking Scales: A New Approach to Left-Right Symmetric Models, Phys. Rev. Lett. 52 (1984) 1072 [INSPIRE].
  85. [85]
    F. Lyonnet, I. Schienbein, F. Staub and A. Wingerter, PyR@TE: Renormalization Group Equations for General Gauge Theories, Comput. Phys. Commun. 185 (2014) 1130 [arXiv:1309.7030] [INSPIRE].
  86. [86]
    F. Lyonnet, Automation of non-SUSY two-loop RGEs with PyR@TE: latest developments, in Proceedings, Meeting of the APS Division of Particles and Fields (DPF 2015), Ann Arbor U.S.A. (2015) [arXiv:1510.08841] [INSPIRE].
  87. [87]
    W.-Y. Keung and G. Senjanović, Majorana Neutrinos and the Production of the Right-handed Charged Gauge Boson, Phys. Rev. Lett. 50 (1983) 1427 [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    C.-Y. Chen, P.S.B. Dev and R.N. Mohapatra, Probing Heavy-Light Neutrino Mixing in Left-Right Seesaw Models at the LHC, Phys. Rev. D 88 (2013) 033014 [arXiv:1306.2342] [INSPIRE].
  89. [89]
    F.F. Deppisch, P.S. Bhupal Dev and A. Pilaftsis, Neutrinos and Collider Physics, New J. Phys. 17 (2015) 075019 [arXiv:1502.06541] [INSPIRE].
  90. [90]
    G. Senjanović and V. Tello, Right Handed Quark Mixing in Left-Right Symmetric Theory, Phys. Rev. Lett. 114 (2015) 071801 [arXiv:1408.3835] [INSPIRE].
  91. [91]
    G. Beall, M. Bander and A. Soni, Constraint on the Mass Scale of a Left-Right Symmetric Electroweak Theory from the K(L) K(S) Mass Difference, Phys. Rev. Lett. 48 (1982) 848 [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    R.N. Mohapatra, G. Senjanović and M.D. Tran, Strangeness Changing Processes and the Limit on the Right-handed Gauge Boson Mass, Phys. Rev. D 28 (1983) 546 [INSPIRE].
  93. [93]
    G. Ecker and W. Grimus, CP Violation and Left-Right Symmetry, Nucl. Phys. B 258 (1985) 328 [INSPIRE].
  94. [94]
    R.N. Mohapatra and J.D. Vergados, A New Contribution to Neutrinoless Double Beta Decay in Gauge Models, Phys. Rev. Lett. 47 (1981) 1713 [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    M. Hirsch, H.V. Klapdor-Kleingrothaus and O. Panella, Double beta decay in left-right symmetric models, Phys. Lett. B 374 (1996) 7 [hep-ph/9602306] [INSPIRE].
  96. [96]
    V. Tello, M. Nemevšek, F. Nesti, G. Senjanović and F. Vissani, Left-Right Symmetry: from LHC to Neutrinoless Double Beta Decay, Phys. Rev. Lett. 106 (2011) 151801 [arXiv:1011.3522] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    J. Chakrabortty, H.Z. Devi, S. Goswami and S. Patra, Neutrinoless double-β decay in TeV scale Left-Right symmetric models, JHEP 08 (2012) 008 [arXiv:1204.2527] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    J. Barry and W. Rodejohann, Lepton number and flavour violation in TeV-scale left-right symmetric theories with large left-right mixing, JHEP 09 (2013) 153 [arXiv:1303.6324] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    P.S. Bhupal Dev, S. Goswami, M. Mitra and W. Rodejohann, Constraining Neutrino Mass from Neutrinoless Double Beta Decay, Phys. Rev. D 88 (2013) 091301 [arXiv:1305.0056] [INSPIRE].
  100. [100]
    W.-C. Huang and J. Lopez-Pavon, On neutrinoless double beta decay in the minimal left-right symmetric model, Eur. Phys. J. C 74 (2014) 2853 [arXiv:1310.0265] [INSPIRE].
  101. [101]
    P.S. Bhupal Dev, S. Goswami and M. Mitra, TeV Scale Left-Right Symmetry and Large Mixing Effects in Neutrinoless Double Beta Decay, Phys. Rev. D 91 (2015) 113004 [arXiv:1405.1399] [INSPIRE].
  102. [102]
    G. Bambhaniya, P.S.B. Dev, S. Goswami and M. Mitra, The Scalar Triplet Contribution to Lepton Flavour Violation and Neutrinoless Double Beta Decay in Left-Right Symmetric Model, JHEP 04 (2016) 046 [arXiv:1512.00440] [INSPIRE].ADSGoogle Scholar
  103. [103]
    M. Nemevšek, F. Nesti and G. Popara, Keung-Senjanović process at the LHC: From lepton number violation to displaced vertices to invisible decays, Phys. Rev. D 97 (2018) 115018 [arXiv:1801.05813] [INSPIRE].
  104. [104]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].
  105. [105]
    I.Z. Rothstein, Renormalization group analysis of the minimal left-right symmetric model, Nucl. Phys. B 358 (1991) 181 [INSPIRE].
  106. [106]
    J. Chakrabortty, P. Konar and T. Mondal, Constraining a class of B-L extended models from vacuum stability and perturbativity, Phys. Rev. D 89 (2014) 056014 [arXiv:1308.1291] [INSPIRE].
  107. [107]
    J. Chakrabortty, J. Gluza, T. Jelinski and T. Srivastava, Theoretical constraints on masses of heavy particles in Left-Right Symmetric Models, Phys. Lett. B 759 (2016) 361 [arXiv:1604.06987] [INSPIRE].
  108. [108]
    A. Maiezza, G. Senjanović and J.C. Vasquez, Higgs sector of the minimal left-right symmetric theory, Phys. Rev. D 95 (2017) 095004 [arXiv:1612.09146] [INSPIRE].
  109. [109]
    P. Bhupal Dev, R.N. Mohapatra and Y. Zhang, Displaced photon signal from a possible light scalar in minimal left-right seesaw model, Phys. Rev. D 95 (2017) 115001 [arXiv:1612.09587] [INSPIRE].
  110. [110]
    ATLAS collaboration, Search for doubly charged Higgs boson production in multi-lepton final states with the ATLAS detector using proton-proton collisions at \( \sqrt{s}=13 \) TeV, Eur. Phys. J. C 78 (2018) 199 [arXiv:1710.09748] [INSPIRE].
  111. [111]
    CMS collaboration, A search for doubly-charged Higgs boson production in three and four lepton final states at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-16-036 (2016).
  112. [112]
    P.S. Bhupal Dev and Y. Zhang, Displaced vertex signatures of doubly charged scalars in the type-II seesaw and its left-right extensions, JHEP 10 (2018) 199 [arXiv:1808.00943] [INSPIRE].ADSCrossRefGoogle Scholar
  113. [113]
    ATLAS and CMS collaborations, Combined Measurement of the Higgs Boson Mass in pp Collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
  114. [114]
    P.S. Bhupal Dev, R.N. Mohapatra, W. Rodejohann and X.-J. Xu, Vacuum structure of the left-right symmetric model, arXiv:1811.06869 [INSPIRE].
  115. [115]
    J. Chakrabortty, P. Konar and T. Mondal, Copositive Criteria and Boundedness of the Scalar Potential, Phys. Rev. D 89 (2014) 095008 [arXiv:1311.5666] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Garv Chauhan
    • 1
  • P. S. Bhupal Dev
    • 1
  • Rabindra N. Mohapatra
    • 2
  • Yongchao Zhang
    • 1
    • 3
    Email author
  1. 1.Department of Physics and McDonnell Center for the Space SciencesWashington UniversitySt. LouisU.S.A.
  2. 2.Maryland Center for Fundamental Physics, Department of PhysicsUniversity of MarylandCollege ParkU.S.A.
  3. 3.Center for High Energy PhysicsPeking UniversityBeijingChina

Personalised recommendations