Journal of High Energy Physics

, 2019:200 | Cite as

A study of quantum field theories in AdS at finite coupling

  • Dean Carmi
  • Lorenzo Di PietroEmail author
  • Shota Komatsu
Open Access
Regular Article - Theoretical Physics


We study the O(N) and Gross-Neveu models at large N on AdSd+1 background. Thanks to the isometries of AdS, the observables in these theories are constrained by the SO(d, 2) conformal group even in the presence of mass deformations, as was discussed by Callan and Wilczek [1], and provide an interesting two-parameter family of quantities which interpolate between the S-matrices in flat space and the correlators in CFT with a boundary. For the actual computation, we judiciously use the spectral representation to resum loop diagrams in the bulk. After the resummation, the AdS 4-particle scattering amplitude is given in terms of a single unknown function of the spectral parameter. We then “bootstrap” the unknown function by requiring the absence of double-trace operators in the boundary OPE. Our results are at leading nontrivial order in \( \frac{1}{N} \), and include the full dependence on the quartic coupling, the mass parameters, and the AdS radius. In the bosonic O(N) model we study both the massive phase and the symmetry-breaking phase, which exists even in AdS2 evading Coleman’s theorem, and identify the AdS analogue of a resonance in flat space. We then propose that symmetry breaking in AdS implies the existence of a conformal manifold in the boundary conformal theory. We also provide evidence for the existence of a critical point with bulk conformal symmetry, matching existing results and finding new ones for the conformal boundary conditions of the critical theories. For the Gross-Neveu model we find a bound state, which interpolates between the familiar bound state in flat space and the displacement operator at the critical point.


1/N Expansion Conformal Field Theory Renormalization Group Resummation 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    C.G. Callan Jr. and F. Wilczek, Infrared behavior at negative curvature, Nucl. Phys. B 340 (1990) 366 [INSPIRE].ADSGoogle Scholar
  2. [2]
    R.J. Eden, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, The analytic S-matrix, Cambridge University Press, Cambridge (1966) [INSPIRE].zbMATHGoogle Scholar
  3. [3]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  4. [4]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  5. [5]
    S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3D Ising Model with the Conformal Bootstrap, Phys. Rev. D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].ADSzbMATHGoogle Scholar
  6. [6]
    S. Caron-Huot, Z. Komargodski, A. Sever and A. Zhiboedov, Strings from Massive Higher Spins: The Asymptotic Uniqueness of the Veneziano Amplitude, JHEP 10 (2017) 026 [arXiv:1607.04253] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  7. [7]
    M.F. Paulos, J. Penedones, J. Toledo, B.C. van Rees and P. Vieira, The S-matrix bootstrap II: two dimensional amplitudes, JHEP 11 (2017) 143 [arXiv:1607.06110] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  8. [8]
    M.F. Paulos, J. Penedones, J. Toledo, B.C. van Rees and P. Vieira, The S-matrix Bootstrap III: Higher Dimensional Amplitudes, arXiv:1708.06765 [INSPIRE].
  9. [9]
    N. Doroud and J. Elias Miró, S-matrix bootstrap for resonances, JHEP 09 (2018) 052 [arXiv:1804.04376] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  10. [10]
    Y. He, A. Irrgang and M. Kruczenski, A note on the S-matrix bootstrap for the 2d O(N) bosonic model, JHEP 11 (2018) 093 [arXiv:1805.02812] [INSPIRE].ADSzbMATHGoogle Scholar
  11. [11]
    L. Córdova and P. Vieira, Adding flavour to the S-matrix bootstrap, JHEP 12 (2018) 063 [arXiv:1805.11143] [INSPIRE].Google Scholar
  12. [12]
    M.F. Paulos and Z. Zheng, Bounding scattering of charged particles in 1 + 1 dimensions, arXiv:1805.11429 [INSPIRE].
  13. [13]
    M. Serone, G. Spada and G. Villadoro, λϕ 4 Theory I: The Symmetric Phase Beyond NNNNNNNNLO, JHEP 08 (2018) 148 [arXiv:1805.05882] [INSPIRE].
  14. [14]
    O. Aharony, M. Berkooz, D. Tong and S. Yankielowicz, Confinement in Anti-de Sitter Space, JHEP 02 (2013) 076 [arXiv:1210.5195] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  15. [15]
    O. Aharony, D. Marolf and M. Rangamani, Conformal field theories in anti-de Sitter space, JHEP 02 (2011) 041 [arXiv:1011.6144] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  16. [16]
    O. Aharony, M. Berkooz and S.-J. Rey, Rigid holography and six-dimensional \( \mathcal{N} \) = (2, 0) theories on AdS 5 × \( \mathbb{S} \) 1, JHEP 03 (2015) 121 [arXiv:1501.02904] [INSPIRE].ADSGoogle Scholar
  17. [17]
    O. Aharony, M. Berkooz, A. Karasik and T. Vaknin, Supersymmetric field theories on AdS p× S q, JHEP 04 (2016) 066 [arXiv:1512.04698] [INSPIRE].ADSzbMATHGoogle Scholar
  18. [18]
    B. Doyon and P. Fonseca, Ising field theory on a Pseudosphere, J. Stat. Mech. 0407 (2004) P07002 [hep-th/0404136] [INSPIRE].zbMATHGoogle Scholar
  19. [19]
    M.F. Paulos, J. Penedones, J. Toledo, B.C. van Rees and P. Vieira, The S-matrix bootstrap. Part I: QFT in AdS, JHEP 11 (2017) 133 [arXiv:1607.06109] [INSPIRE].
  20. [20]
    D. Mazac, Analytic bounds and emergence of AdS 2 physics from the conformal bootstrap, JHEP 04 (2017) 146 [arXiv:1611.10060] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  21. [21]
    D. Mazac and M.F. Paulos, The Analytic Functional Bootstrap I: 1D CFTs and 2D S-Matrices, arXiv:1803.10233 [INSPIRE].
  22. [22]
    Z. Komargodski and A. Zhiboedov, Convexity and Liberation at Large Spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].ADSGoogle Scholar
  23. [23]
    A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The Analytic Bootstrap and AdS Superhorizon Locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  24. [24]
    L.F. Alday, A. Bissi and T. Lukowski, Large spin systematics in CFT, JHEP 11 (2015) 101 [arXiv:1502.07707] [INSPIRE].ADSzbMATHGoogle Scholar
  25. [25]
    L.F. Alday and A. Zhiboedov, An Algebraic Approach to the Analytic Bootstrap, JHEP 04 (2017) 157 [arXiv:1510.08091] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  26. [26]
    L.F. Alday, Large Spin Perturbation Theory for Conformal Field Theories, Phys. Rev. Lett. 119 (2017) 111601 [arXiv:1611.01500] [INSPIRE].ADSGoogle Scholar
  27. [27]
    D. Simmons-Duffin, The Lightcone Bootstrap and the Spectrum of the 3d Ising CFT, JHEP 03 (2017) 086 [arXiv:1612.08471] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  28. [28]
    S. Caron-Huot, Analyticity in Spin in Conformal Theories, JHEP 09 (2017) 078 [arXiv:1703.00278] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  29. [29]
    M. Lemos, P. Liendo, M. Meineri and S. Sarkar, Universality at large transverse spin in defect CFT, JHEP 09 (2018) 091 [arXiv:1712.08185] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  30. [30]
    S.R. Coleman, R. Jackiw and H.D. Politzer, Spontaneous Symmetry Breaking in the O(N) Model for Large N *, Phys. Rev. D 10 (1974) 2491 [INSPIRE].ADSGoogle Scholar
  31. [31]
    M. Moshe and J. Zinn-Justin, Quantum field theory in the large N limit: A Review, Phys. Rept. 385 (2003) 69 [hep-th/0306133] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  32. [32]
    S.A. Hartnoll and S.P. Kumar, The O(N) model on a squashed S 3 and the Klebanov-Polyakov correspondence, JHEP 06 (2005) 012 [hep-th/0503238] [INSPIRE].ADSGoogle Scholar
  33. [33]
    I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  34. [34]
    E. Kiritsis and C. Kounnas, Curved four-dimensional space-times as infrared regulator in superstring theories, Nucl. Phys. Proc. Suppl. 41 (1995) 331 [hep-th/9410212] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  35. [35]
    N.D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one-dimensional or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett. 17 (1966) 1133 [INSPIRE].ADSGoogle Scholar
  36. [36]
    S.R. Coleman, There are no Goldstone bosons in two-dimensions, Commun. Math. Phys. 31 (1973) 259 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  37. [37]
    C.P. Burgess and C.A. Lütken, Propagators and Effective Potentials in Anti-de Sitter Space, Phys. Lett. B 153 (1985) 137 [INSPIRE].ADSMathSciNetGoogle Scholar
  38. [38]
    T. Inami and H. Ooguri, One Loop Effective Potential in Anti-de Sitter Space, Prog. Theor. Phys. 73 (1985) 1051 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  39. [39]
    R. Camporesi and A. Higuchi, Arbitrary spin effective potentials in anti-de Sitter space-time, Phys. Rev. D 47 (1993) 3339 [INSPIRE].ADSGoogle Scholar
  40. [40]
    S.S. Gubser and I. Mitra, Double trace operators and one loop vacuum energy in AdS/CFT, Phys. Rev. D 67 (2003) 064018 [hep-th/0210093] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  41. [41]
    T. Hartman and L. Rastelli, Double-trace deformations, mixed boundary conditions and functional determinants in AdS/CFT, JHEP 01 (2008) 019 [hep-th/0602106] [INSPIRE].ADSMathSciNetGoogle Scholar
  42. [42]
    S. Giombi and I.R. Klebanov, One Loop Tests of Higher Spin AdS/CFT, JHEP 12 (2013) 068 [arXiv:1308.2337] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  43. [43]
    P. Breitenlohner and D.Z. Freedman, Stability in Gauged Extended Supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  44. [44]
    S.R. Coleman and F. De Luccia, Gravitational Effects on and of Vacuum Decay, Phys. Rev. D 21 (1980) 3305 [INSPIRE].ADSMathSciNetGoogle Scholar
  45. [45]
    T. Inami and H. Ooguri, Nambu-Goldstone bosons in curved space-time, Phys. Lett. B 163 (1985) 101 [INSPIRE].ADSGoogle Scholar
  46. [46]
    D.J. Gross and A. Neveu, Dynamical Symmetry Breaking in Asymptotically Free Field Theories, Phys. Rev. D 10 (1974) 3235 [INSPIRE].ADSGoogle Scholar
  47. [47]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  48. [48]
    O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, The Hagedorn-deconfinement phase transition in weakly coupled large N gauge theories, Adv. Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  49. [49]
    R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, Conformal Bootstrap in Mellin Space, Phys. Rev. Lett. 118 (2017) 081601 [arXiv:1609.00572] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  50. [50]
    R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, A Mellin space approach to the conformal bootstrap, JHEP 05 (2017) 027 [arXiv:1611.08407] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  51. [51]
    R. Gopakumar and A. Sinha, On the Polyakov-Mellin bootstrap, JHEP 12 (2018) 040 [arXiv:1809.10975] [INSPIRE].ADSGoogle Scholar
  52. [52]
    S. Giombi, C. Sleight and M. Taronna, Spinning AdS Loop Diagrams: Two Point Functions, JHEP 06 (2018) 030 [arXiv:1708.08404] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  53. [53]
    E.Y. Yuan, Loops in the Bulk, arXiv:1710.01361 [INSPIRE].
  54. [54]
    E.Y. Yuan, Simplicity in AdS Perturbative Dynamics, arXiv:1801.07283 [INSPIRE].
  55. [55]
    C. Cardona, Mellin-(Schwinger) representation of One-loop Witten diagrams in AdS, arXiv:1708.06339 [INSPIRE].
  56. [56]
    I. Bertan and I. Sachs, Loops in Anti-de Sitter Space, Phys. Rev. Lett. 121 (2018) 101601 [arXiv:1804.01880] [INSPIRE].ADSGoogle Scholar
  57. [57]
    I. Bertan, I. Sachs and E.D. Skvortsov, Quantum ϕ 4 Theory in AdS 4 and its CFT Dual, arXiv:1810.00907 [INSPIRE].
  58. [58]
    A.L. Fitzpatrick, E. Katz, D. Poland and D. Simmons-Duffin, Effective Conformal Theory and the Flat-Space Limit of AdS, JHEP 07 (2011) 023 [arXiv:1007.2412] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  59. [59]
    A.L. Fitzpatrick and J. Kaplan, Analyticity and the Holographic S-matrix, JHEP 10 (2012) 127 [arXiv:1111.6972] [INSPIRE].ADSzbMATHGoogle Scholar
  60. [60]
    J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03 (2011) 025 [arXiv:1011.1485] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  61. [61]
    A.L. Fitzpatrick and J. Kaplan, Unitarity and the Holographic S-matrix, JHEP 10 (2012) 032 [arXiv:1112.4845] [INSPIRE].ADSzbMATHGoogle Scholar
  62. [62]
    O. Aharony, L.F. Alday, A. Bissi and E. Perlmutter, Loops in AdS from Conformal Field Theory, JHEP 07 (2017) 036 [arXiv:1612.03891] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  63. [63]
    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].ADSMathSciNetGoogle Scholar
  64. [64]
    J. Polchinski and V. Rosenhaus, The Spectrum in the Sachdev-Ye-Kitaev Model, JHEP 04 (2016) 001 [arXiv:1601.06768] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  65. [65]
    M.E. Fisher and M.N. Barber, Scaling Theory for Finite-Size Effects in the Critical Region, Phys. Rev. Lett. 28 (1972) 1516 [INSPIRE].ADSGoogle Scholar
  66. [66]
    E. Brézin, An Investigation of Finite Size Scaling, J. Phys. France 43 (1982) 15.Google Scholar
  67. [67]
    S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev. 177 (1969) 2239 [INSPIRE].
  68. [68]
    C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2., Phys. Rev. 177 (1969) 2247 [INSPIRE].
  69. [69]
    D. Green, Z. Komargodski, N. Seiberg, Y. Tachikawa and B. Wecht, Exactly Marginal Deformations and Global Symmetries, JHEP 06 (2010) 106 [arXiv:1005.3546] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  70. [70]
    V. Bashmakov, M. Bertolini and H. Raj, On non-supersymmetric conformal manifolds: field theory and holography, JHEP 11 (2017) 167 [arXiv:1709.01749] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  71. [71]
    C. Behan, Conformal manifolds: ODEs from OPEs, JHEP 03 (2018) 127 [arXiv:1709.03967] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  72. [72]
    S. Hollands, Action principle for OPE, Nucl. Phys. B 926 (2018) 614 [arXiv:1710.05601] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  73. [73]
    K. Sen and Y. Tachikawa, First-order conformal perturbation theory by marginal operators, arXiv:1711.05947 [INSPIRE].
  74. [74]
    C. Behan, L. Rastelli, S. Rychkov and B. Zan, A scaling theory for the long-range to short-range crossover and an infrared duality, J. Phys. A 50 (2017) 354002 [arXiv:1703.05325] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  75. [75]
    J. Caetano, Ö. Gürdoğan and V. Kazakov, Chiral limit of \( \mathcal{N} \) = 4 SYM and ABJM and integrable Feynman graphs, JHEP 03 (2018) 077 [arXiv:1612.05895] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  76. [76]
    O. Mamroud and G. Torrents, RG stability of integrable fishnet models, JHEP 06 (2017) 012 [arXiv:1703.04152] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  77. [77]
    T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].ADSGoogle Scholar
  78. [78]
    E. Witten, Global Aspects of Current Algebra, Nucl. Phys. B 223 (1983) 422 [INSPIRE].ADSMathSciNetGoogle Scholar
  79. [79]
    K.G. Wilson and J.B. Kogut, The Renormalization group and the ϵ-expansion, Phys. Rept. 12 (1974) 75 [INSPIRE].ADSGoogle Scholar
  80. [80]
    E. Brézin and J. Zinn-Justin, Renormalization of the nonlinear σ-model in 2 + epsilon dimensions. Application to the Heisenberg ferromagnets, Phys. Rev. Lett. 36 (1976) 691 [INSPIRE].
  81. [81]
    L. Fei, S. Giombi and I.R. Klebanov, Critical O(N) models in 6 − ϵ dimensions, Phys. Rev. D 90 (2014) 025018 [arXiv:1404.1094] [INSPIRE].ADSGoogle Scholar
  82. [82]
    D.M. McAvity and H. Osborn, Conformal field theories near a boundary in general dimensions, Nucl. Phys. B 455 (1995) 522 [cond-mat/9505127] [INSPIRE].
  83. [83]
    P. Liendo, L. Rastelli and B.C. van Rees, The Bootstrap Program for Boundary CFT d, JHEP 07 (2013) 113 [arXiv:1210.4258] [INSPIRE].ADSzbMATHGoogle Scholar
  84. [84]
    A. Dymarsky, K. Farnsworth, Z. Komargodski, M.A. Luty and V. Prilepina, Scale Invariance, Conformality and Generalized Free Fields, JHEP 02 (2016) 099 [arXiv:1402.6322] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  85. [85]
    M. Hogervorst, Crossing Kernels for Boundary and Crosscap CFTs, arXiv:1703.08159 [INSPIRE].
  86. [86]
    B. Mukhametzhanov and A. Zhiboedov, Analytic Euclidean Bootstrap, arXiv:1808.03212 [INSPIRE].
  87. [87]
    A. Petkou, Conserved currents, consistency relations and operator product expansions in the conformally invariant O(N) vector model, Annals Phys. 249 (1996) 180 [hep-th/9410093] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  88. [88]
    K. Lang and W. Rühl, Critical nonlinear O(N) σ-models at 2 < d < 4: The Degeneracy of quasiprimary fields and it resolution, Z. Phys. C 61 (1994) 495 [INSPIRE].ADSGoogle Scholar
  89. [89]
    A.J. Bray and M.A. Moore, Critical Behavior of a Semiinfinite System: n Vector Model in the Large N Limit, Phys. Rev. Lett. 38 (1977) 735 [INSPIRE].ADSGoogle Scholar
  90. [90]
    K. Ohno and Y. Okabe, The 1/N expansion for the N vector model in the semiinfinite space, Prog. Theor. Phys. 70 (1983) 1226 [INSPIRE].ADSGoogle Scholar
  91. [91]
    A. Bissi, T. Hansen and A. Söderberg, Analytic Bootstrap for Boundary CFT, JHEP 01 (2019) 010 [arXiv:1808.08155] [INSPIRE].ADSGoogle Scholar
  92. [92]
    J. Zinn-Justin, Four fermion interaction near four-dimensions, Nucl. Phys. B 367 (1991) 105 [INSPIRE].ADSMathSciNetGoogle Scholar
  93. [93]
    B. Rosenstein, B. Warr and S.H. Park, Dynamical symmetry breaking in four Fermi interaction models, Phys. Rept. 205 (1991) 59 [INSPIRE].ADSGoogle Scholar
  94. [94]
    S. Weinberg, Six-dimensional Methods for Four-dimensional Conformal Field Theories, Phys. Rev. D 82 (2010) 045031 [arXiv:1006.3480] [INSPIRE].ADSGoogle Scholar
  95. [95]
    L. Iliesiu, F. Kos, D. Poland, S.S. Pufu, D. Simmons-Duffin and R. Yacoby, Bootstrapping 3D Fermions, JHEP 03 (2016) 120 [arXiv:1508.00012] [INSPIRE].ADSGoogle Scholar
  96. [96]
    L. Iliesiu, F. Kos, D. Poland, S.S. Pufu, D. Simmons-Duffin and R. Yacoby, Fermion-Scalar Conformal Blocks, JHEP 04 (2016) 074 [arXiv:1511.01497] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  97. [97]
    H. Isono, On conformal correlators and blocks with spinors in general dimensions, Phys. Rev. D 96 (2017) 065011 [arXiv:1706.02835] [INSPIRE].ADSMathSciNetGoogle Scholar
  98. [98]
    M. Nishida and K. Tamaoka, Fermions in Geodesic Witten Diagrams, JHEP 07 (2018) 149 [arXiv:1805.00217] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  99. [99]
    T. Kawano and K. Okuyama, Spinor exchange in AdS(d + 1), Nucl. Phys. B 565 (2000) 427 [hep-th/9905130] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  100. [100]
    J. Faller, S. Sarkar and M. Verma, Mellin Amplitudes for Fermionic Conformal Correlators, JHEP 03 (2018) 106 [arXiv:1711.07929] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  101. [101]
    L. Fei, S. Giombi, I.R. Klebanov and G. Tarnopolsky, Yukawa CFTs and Emergent Supersymmetry, PTEP 2016 (2016) 12C105 [arXiv:1607.05316] [INSPIRE].
  102. [102]
    O. Aharony, G. Gur-Ari and R. Yacoby, Correlation Functions of Large N Chern-Simons-Matter Theories and Bosonization in Three Dimensions, JHEP 12 (2012) 028 [arXiv:1207.4593] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  103. [103]
    S. Jain, M. Mandlik, S. Minwalla, T. Takimi, S.R. Wadia and S. Yokoyama, Unitarity, Crossing Symmetry and Duality of the S-matrix in large N Chern-Simons theories with fundamental matter, JHEP 04 (2015) 129 [arXiv:1404.6373] [INSPIRE].ADSzbMATHGoogle Scholar
  104. [104]
    M. Billò, V. Gonçalves, E. Lauria and M. Meineri, Defects in conformal field theory, JHEP 04 (2016) 091 [arXiv:1601.02883] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  105. [105]
    D. Gaiotto, D. Mazac and M.F. Paulos, Bootstrapping the 3d Ising twist defect, JHEP 03 (2014) 100 [arXiv:1310.5078] [INSPIRE].ADSGoogle Scholar
  106. [106]
    S. Yamaguchi, The ϵ-expansion of the codimension two twist defect from conformal field theory, PTEP 2016 (2016) 091B01 [arXiv:1607.05551] [INSPIRE].
  107. [107]
    A. Söderberg, Anomalous Dimensions in the WF O(N) Model with a Monodromy Line Defect, JHEP 03 (2018) 058 [arXiv:1706.02414] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  108. [108]
    A. Zamolodchikov, OPE in general QFTs, in Workshop on the S-matrix bootstrap, ICTP-SAIFR, São Paulo, Brazil, September 9–13, 2019.Google Scholar
  109. [109]
    D. Pappadopulo, S. Rychkov, J. Espin and R. Rattazzi, OPE Convergence in Conformal Field Theory, Phys. Rev. D 86 (2012) 105043 [arXiv:1208.6449] [INSPIRE].ADSGoogle Scholar
  110. [110]
    M. Hogervorst and S. Rychkov, Radial Coordinates for Conformal Blocks, Phys. Rev. D 87 (2013) 106004 [arXiv:1303.1111] [INSPIRE].ADSGoogle Scholar
  111. [111]
    C.J.C. Burges, D.Z. Freedman, S. Davis and G.W. Gibbons, Supersymmetry in Anti-de Sitter Space, Annals Phys. 167 (1986) 285 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  112. [112]
    L. Cornalba, Eikonal methods in AdS/CFT: Regge theory and multi-reggeon exchange, arXiv:0710.5480 [INSPIRE].
  113. [113]
    L. Cornalba, M.S. Costa and J. Penedones, Eikonal Methods in AdS/CFT: BFKL Pomeron at Weak Coupling, JHEP 06 (2008) 048 [arXiv:0801.3002] [INSPIRE].ADSMathSciNetGoogle Scholar
  114. [114]
    J. Penedones, High Energy Scattering in the AdS/CFT Correspondence, Ph.D. Thesis, Porto U. (2007) [arXiv:0712.0802] [INSPIRE].
  115. [115]
    T.H. Koornwinder, Jacobi functions and analysis on noncompact semisimple lie groups, in Special functions: group theoretical aspects and applications, pp. 1–85, Springer (1984).Google Scholar
  116. [116]
    M. Hogervorst and B.C. van Rees, Crossing symmetry in alpha space, JHEP 11 (2017) 193 [arXiv:1702.08471] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  117. [117]
    J. Qiao and S. Rychkov, A tauberian theorem for the conformal bootstrap, JHEP 12 (2017) 119 [arXiv:1709.00008] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  118. [118]
    A.L. Fitzpatrick, J. Kaplan, J. Penedones, S. Raju and B.C. van Rees, A Natural Language for AdS/CFT Correlators, JHEP 11 (2011) 095 [arXiv:1107.1499] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  119. [119]
    W. Mueck and K.S. Viswanathan, Conformal field theory correlators from classical scalar field theory on AdS(d+1), Phys. Rev. D 58 (1998) 041901 [hep-th/9804035] [INSPIRE].ADSGoogle Scholar
  120. [120]
    D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the CFT(d)/AdS(d+1) correspondence, Nucl. Phys. B 546 (1999) 96 [hep-th/9804058] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  121. [121]
    D. Simmons-Duffin, D. Stanford and E. Witten, A spacetime derivation of the Lorentzian OPE inversion formula, JHEP 07 (2018) 085 [arXiv:1711.03816] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2019

Authors and Affiliations

  1. 1.Walter Burke Institute for Theoretical PhysicsCaltechPasadenaU.S.A.
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  3. 3.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.

Personalised recommendations