Advertisement

Journal of High Energy Physics

, 2019:199 | Cite as

Rotating attractors and BPS black holes in AdS4

  • Kiril Hristov
  • Stefanos Katmadas
  • Chiara ToldoEmail author
Open Access
Regular Article - Theoretical Physics
  • 16 Downloads

Abstract

We analyze stationary BPS black hole solutions to 4d\( \mathcal{N} \) = 2 abelian gauged supergravity. Using an appropriate near horizon ansatz, we construct rotating attractors with magnetic flux realizing a topological twist along the horizon surface, for any theory with a symmetric scalar manifold. An analytic flow to asymptotically locally AdS4 is presented for a subclass of these near-horizon geometries, and an explicit new example of supersymmetric AdS4 rotating black hole is discussed in detail. We further note that, upon tuning the gauging to special values, one can obtain solutions with different asymptotics, and in particular reductions of doubly spinning asymptotically AdS5 black holes. Finally we present a proposal for the form of the BPS entropy function with rotation, which we expect to be holographically related to the refined twisted index of the dual theory.

Keywords

AdS-CFT Correspondence Black Holes in String Theory Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP 12 (1997) 002 [hep-th/9711053] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    L.J. Romans, Supersymmetric, cold and lukewarm black holes in cosmological Einstein-Maxwell theory, Nucl. Phys. B 383 (1992) 395 [hep-th/9203018] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    J.P. Gauntlett, N. Kim, S. Pakis and D. Waldram, Membranes wrapped on holomorphic curves, Phys. Rev. D 65 (2002) 026003 [hep-th/0105250] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    S.L. Cacciatori and D. Klemm, Supersymmetric AdS 4 black holes and attractors, JHEP 01 (2010) 085 [arXiv:0911.4926] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  6. [6]
    G. Dall’Agata and A. Gnecchi, Flow equations and attractors for black holes in N = 2 U(1) gauged supergravity, JHEP 03 (2011) 037 [arXiv:1012.3756] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    K. Hristov and S. Vandoren, Static supersymmetric black holes in AdS 4 with spherical symmetry, JHEP 04 (2011) 047 [arXiv:1012.4314] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  8. [8]
    N. Halmagyi, BPS black hole horizons in N = 2 gauged supergravity, JHEP 02 (2014) 051 [arXiv:1308.1439] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S. Katmadas, Static BPS black holes in U(1) gauged supergravity, JHEP 09 (2014) 027 [arXiv:1405.4901] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    N. Halmagyi, Static BPS black holes in AdS 4 with general dyonic charges, JHEP 03 (2015) 032 [arXiv:1408.2831] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    F. Benini, K. Hristov and A. Zaffaroni, Black hole microstates in AdS 4 from supersymmetric localization, JHEP 05 (2016) 054 [arXiv:1511.04085] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    F. Benini and A. Zaffaroni, Supersymmetric partition functions on Riemann surfaces, Proc. Symp. Pure Math. 96 (2017) 13 [arXiv:1605.06120] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  13. [13]
    F. Benini, K. Hristov and A. Zaffaroni, Exact microstate counting for dyonic black holes in AdS 4, Phys. Lett. B 771 (2017) 462 [arXiv:1608.07294] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  14. [14]
    A. Cabo-Bizet, V.I. Giraldo-Rivera and L.A. Pando Zayas, Microstate counting of AdS 4 hyperbolic black hole entropy via the topologically twisted index, JHEP 08 (2017) 023 [arXiv:1701.07893] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    S.M. Hosseini and A. Zaffaroni, Large N matrix models for 3d \( \mathcal{N} \) = 2 theories: twisted index, free energy and black holes, JHEP 08 (2016) 064 [arXiv:1604.03122] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    F. Azzurli et al., A universal counting of black hole microstates in AdS 4, JHEP 02 (2018) 054 [arXiv:1707.04257] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    J.T. Liu, L.A. Pando Zayas, V. Rathee and W. Zhao, Toward microstate counting beyond large N in localization and the dual one-loop quantum supergravity, JHEP 01 (2018) 026 [arXiv:1707.04197] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    S.M. Hosseini, K. Hristov and A. Passias, Holographic microstate counting for AdS 4 black holes in massive IIA supergravity, JHEP 10 (2017) 190 [arXiv:1707.06884] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  19. [19]
    F. Benini, H. Khachatryan and P. Milan, Black hole entropy in massive Type IIA, Class. Quant. Grav. 35 (2018) 035004 [arXiv:1707.06886] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    J.T. Liu, L.A. Pando Zayas and S. Zhou, Subleading microstate counting in the dual to massive Type IIA, arXiv:1808.10445 [INSPIRE].
  21. [21]
    K. Hristov, I. Lodato and V. Reys, On the quantum entropy function in 4D gauged supergravity, JHEP 07 (2018) 072 [arXiv:1803.05920] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    F. Benini and A. Zaffaroni, A topologically twisted index for three-dimensional supersymmetric theories, JHEP 07 (2015) 127 [arXiv:1504.03698] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    K. Hristov, C. Toldo and S. Vandoren, On BPS bounds in D = 4 N = 2 gauged supergravity, JHEP 12 (2011) 014 [arXiv:1110.2688] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    V.A. Kostelecky and M.J. Perry, Solitonic black holes in gauged N = 2 supergravity, Phys. Lett. B 371 (1996) 191 [hep-th/9512222] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    M.M. Caldarelli and D. Klemm, Supersymmetry of Anti-de Sitter black holes, Nucl. Phys. B 545 (1999) 434 [hep-th/9808097] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    D. Klemm, Rotating BPS black holes in matter-coupled AdS 4 supergravity, JHEP 07 (2011) 019 [arXiv:1103.4699] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    Z.W. Chong, M. Cvetič, H. Lü and C.N. Pope, Charged rotating black holes in four-dimensional gauged and ungauged supergravities, Nucl. Phys. B 717 (2005) 246 [hep-th/0411045] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    D.D.K. Chow, Single-charge rotating black holes in four-dimensional gauged supergravity, Class. Quant. Grav. 28 (2011) 032001 [arXiv:1011.2202] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    D.D.K. Chow, Two-charge rotating black holes in four-dimensional gauged supergravity, Class. Quant. Grav. 28 (2011) 175004 [arXiv:1012.1851] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    D.D.K. Chow and G. Compère, Dyonic AdS black holes in maximal gauged supergravity, Phys. Rev. D 89 (2014) 065003 [arXiv:1311.1204] [INSPIRE].ADSGoogle Scholar
  31. [31]
    A. Gnecchi, K. Hristov, D. Klemm, C. Toldo and O. Vaughan, Rotating black holes in 4d gauged supergravity, JHEP 01 (2014) 127 [arXiv:1311.1795] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    D. Klemm and O. Vaughan, Nonextremal black holes in gauged supergravity and the real formulation of special geometry, JHEP 01 (2013) 053 [arXiv:1207.2679] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    D. Klemm and O. Vaughan, Nonextremal black holes in gauged supergravity and the real formulation of special geometry II, Class. Quant. Grav. 30 (2013) 065003 [arXiv:1211.1618] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    S. Ferrara and M. Günaydin, Orbits of exceptional groups, duality and BPS states in string theory, Int. J. Mod. Phys. A 13 (1998) 2075 [hep-th/9708025] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    S. Ferrara, E.G. Gimon and R. Kallosh, Magic supergravities, N = 8 and black hole composites, Phys. Rev. D 74 (2006) 125018 [hep-th/0606211] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    G. Bossard and S. Katmadas, Duality covariant multi-centre black hole systems, JHEP 08 (2013) 007 [arXiv:1304.6582] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    F. Benini and N. Bobev, Two-dimensional SCFTs from wrapped branes and c-extremization, JHEP 06 (2013) 005 [arXiv:1302.4451] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    K. Hristov, Dimensional reduction of BPS attractors in AdS gauged supergravities, JHEP 12 (2014) 066 [arXiv:1409.8504] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    S.M. Hosseini, K. Hristov and A. Zaffaroni, An extremization principle for the entropy of rotating BPS black holes in AdS 5, JHEP 07 (2017) 106 [arXiv:1705.05383] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  40. [40]
    M. Azzola, D. Klemm and M. Rabbiosi, AdS 5 black strings in the STU model of FI-gauged N = 2 supergravity, JHEP 10 (2018) 080 [arXiv:1803.03570] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    J.B. Gutowski and H.S. Reall, General supersymmetric AdS 5 black holes, JHEP 04 (2004) 048 [hep-th/0401129] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    H.K. Kunduri, J. Lucietti and H.S. Reall, Supersymmetric multi-charge AdS 5 black holes, JHEP 04 (2006) 036 [hep-th/0601156] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J.B. Gutowski and H.S. Reall, Supersymmetric AdS 5 black holes, JHEP 02 (2004) 006 [hep-th/0401042] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    B. de Wit and A. Van Proeyen, Potentials and symmetries of general gauged N = 2 supergravity: Yang-Mills models, Nucl. Phys. B 245 (1984) 89 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    B. de Wit, P.G. Lauwers and A. Van Proeyen, Lagrangians of N = 2 supergravity — Matter systems, Nucl. Phys. B 255 (1985) 569 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    B. de Wit, H. Samtleben and M. Trigiante, Magnetic charges in local field theory, JHEP 09 (2005) 016 [hep-th/0507289] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  47. [47]
    B. de Wit and M. van Zalk, Electric and magnetic charges in N = 2 conformal supergravity theories, JHEP 10 (2011) 050 [arXiv:1107.3305] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    B. de Wit, F. Vanderseypen and A. Van Proeyen, Symmetry structure of special geometries, Nucl. Phys. B 400 (1993) 463 [hep-th/9210068] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    M.J. Duff and J.T. Liu, Anti-de Sitter black holes in gauged N = 8 supergravity, Nucl. Phys. B 554 (1999) 237 [hep-th/9901149] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    S.L. Cacciatori, D. Klemm, D.S. Mansi and E. Zorzan, All timelike supersymmetric solutions of N = 2, D = 4 gauged supergravity coupled to abelian vector multiplets, JHEP 05 (2008) 097 [arXiv:0804.0009] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    P. Meessen and T. Ortín, Supersymmetric solutions to gauged N = 2 d = 4 SUGRA: the full timelike shebang, Nucl. Phys. B 863 (2012) 65 [arXiv:1204.0493] [INSPIRE].
  53. [53]
    S. Chimento, D. Klemm and N. Petri, Supersymmetric black holes and attractors in gauged supergravity with hypermultiplets, JHEP 06 (2015) 150 [arXiv:1503.09055] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    G. Bossard and S. Katmadas, Duality covariant non-BPS first order systems, JHEP 09 (2012) 100 [arXiv:1205.5461] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    E. Perlmutter, Hyperscaling violation from supergravity, JHEP 06 (2012) 165 [arXiv:1205.0242] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    K. Hristov, S. Katmadas and V. Pozzoli, Ungauging black holes and hidden supercharges, JHEP 01 (2013) 110 [arXiv:1211.0035] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    H. Looyestijn, E. Plauschinn and S. Vandoren, New potentials from Scherk-Schwarz reductions, JHEP 12 (2010) 016 [arXiv:1008.4286] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    M.T. Anderson, C. Beem, N. Bobev and L. Rastelli, Holographic uniformization, Commun. Math. Phys. 318 (2013) 429 [arXiv:1109.3724] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    H. Erbin and N. Halmagyi, Quarter-BPS black holes in AdS 4 -NUT from N = 2 gauged supergravity, JHEP 10 (2015) 081 [arXiv:1503.04686] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  60. [60]
    I. Bena, G. Dall’Agata, S. Giusto, C. Ruef and N.P. Warner, Non-BPS black rings and black holes in Taub-NUT, JHEP 06 (2009) 015 [arXiv:0902.4526] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    K. Hristov, On BPS bounds in D = 4 N = 2 gauged supergravity II: general matter couplings and black hole masses, JHEP 03 (2012) 095 [arXiv:1112.4289] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    D. Astefanesei et al., Rotating attractors, JHEP 10 (2006) 058 [hep-th/0606244] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    I. Papadimitriou and K. Skenderis, Thermodynamics of asymptotically locally AdS spacetimes, JHEP 08 (2005) 004 [hep-th/0505190] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    S.W. Hawking, C.J. Hunter and M. Taylor, Rotation and the AdS/CFT correspondence, Phys. Rev. D 59 (1999) 064005 [hep-th/9811056] [INSPIRE].ADSMathSciNetGoogle Scholar
  65. [65]
    G.W. Gibbons, M.J. Perry and C.N. Pope, The first law of thermodynamics for Kerr-anti-de Sitter black holes, Class. Quant. Grav. 22 (2005) 1503 [hep-th/0408217] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    G.W. Gibbons, M.J. Perry and C.N. Pope, Bulk/boundary thermodynamic equivalence and the Bekenstein and cosmic-censorship bounds for rotating charged AdS black holes, Phys. Rev. D 72 (2005) 084028 [hep-th/0506233] [INSPIRE].ADSMathSciNetGoogle Scholar
  67. [67]
    C. Toldo, Thermodynamics of spinning AdS 4 black holes in gauged supergravity, Phys. Rev. D 94 (2016) 066002 [arXiv:1604.05705] [INSPIRE].ADSMathSciNetGoogle Scholar
  68. [68]
    K. Hristov, A. Tomasiello and A. Zaffaroni, Supersymmetry on three-dimensional lorentzian curved spaces and black hole holography, JHEP 05 (2013) 057 [arXiv:1302.5228] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    C. Closset, H. Kim and B. Willett, Seifert fibering operators in 3D \( \mathcal{N} \) = 2 theories, JHEP 11 (2018) 004 [arXiv:1807.02328] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  70. [70]
    M. Cvetič, G.W. Gibbons and C.N. Pope, Universal area product formulae for rotating and charged black holes in four and higher dimensions, Phys. Rev. Lett. 106 (2011) 121301 [arXiv:1011.0008] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  71. [71]
    A. Castro and M.J. Rodriguez, Universal properties and the first law of black hole inner mechanics, Phys. Rev. D 86 (2012) 024008 [arXiv:1204.1284] [INSPIRE].ADSGoogle Scholar
  72. [72]
    C. Toldo and S. Vandoren, Static nonextremal AdS 4 black hole solutions, JHEP 09 (2012) 048 [arXiv:1207.3014] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  73. [73]
    S. Ferrara and R. Kallosh, Supersymmetry and attractors, Phys. Rev. D 54 (1996) 1514 [hep-th/9602136] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  74. [74]
    S. Ferrara, G.W. Gibbons and R. Kallosh, Black holes and critical points in moduli space, Nucl. Phys. B 500 (1997) 75 [hep-th/9702103] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  75. [75]
    A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity, JHEP 09 (2005) 038 [hep-th/0506177] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  76. [76]
    J. Gomes, Quantum entropy and exact 4d/5d connection, JHEP 01 (2015) 109 [arXiv:1305.2849] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  77. [77]
    A. Ceresole, R. D’Auria and S. Ferrara, The symplectic structure of N = 2 supergravity and its central extension, Nucl. Phys. Proc. Suppl. 46 (1996) 67 [hep-th/9509160] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  78. [78]
    S. Ferrara, A. Marrani and A. Yeranyan, On invariant structures of black hole charges, JHEP 02 (2012) 071 [arXiv:1110.4004] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  79. [79]
    B.L. Cerchiai, S. Ferrara, A. Marrani and B. Zumino, Duality, entropy and ADM mass in supergravity, Phys. Rev. D 79 (2009) 125010 [arXiv:0902.3973] [INSPIRE].ADSMathSciNetGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2019

Authors and Affiliations

  • Kiril Hristov
    • 1
  • Stefanos Katmadas
    • 2
  • Chiara Toldo
    • 3
    • 4
    Email author
  1. 1.Institute for Nuclear Research and Nuclear EnergyBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Instituut voor Theoretische FysicaKU LeuvenLeuvenBelgium
  3. 3.Kavli Institute for Theoretical Physics, Kohn HallUniversity of California Santa BarbaraSanta BarbaraU.S.A.
  4. 4.Centre de Physique Théorique (CPHT), Ecole PolytechniquePalaiseau CedexFrance

Personalised recommendations