Journal of High Energy Physics

, 2019:198 | Cite as

The holographic interpretation of \( J\overline{T} \)-deformed CFTs

  • Adam BzowskiEmail author
  • Monica Guica
Open Access
Regular Article - Theoretical Physics


Recently, a non-local yet possibly UV-complete quantum field theory has been constructed by deforming a two-dimensional CFT by the composite operator \( J\overline{T} \), where J is a chiral U(1) current and \( \overline{T} \) is a component of the stress tensor. Assuming the original CFT was a holographic CFT, we work out the holographic dual of its \( J\overline{T} \) deformation. We find that the dual spacetime is still AdS3, but with modified boundary conditions that mix the metric and the Chern-Simons gauge field dual to the U(1) current. We show that when the coefficient of the chiral anomaly for J vanishes, the energy and thermodynamics of black holes obeying these modified boundary conditions precisely reproduce the previously derived field theory spectrum and thermodynamics. Our proposed holographic dictionary can also reproduce the field-theoretical spectrum in presence of the chiral anomaly, upon a certain assumption that we justify. The asymptotic symmetry group associated to these boundary conditions consists of two copies of the Virasoro and one copy of the U(1) Kač-Moody algebra, just as before the deformation; the only effect of the latter is to modify the spacetime dependence of the right-moving Virasoro generators, whose action becomes state-dependent and effectively non-local.


AdS-CFT Correspondence Conformal Field Theory Chern-Simons Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    F.A. Smirnov and A.B. Zamolodchikov, On space of integrable quantum field theories, Nucl. Phys. B 915 (2017) 363 [arXiv:1608.05499] [INSPIRE].
  2. [2]
    A. Cavaglià, S. Negro, I.M. Szécsényi and R. Tateo, \( T\overline{T} \) -deformed 2D Quantum Field Theories, JHEP 10 (2016) 112 [arXiv:1608.05534] [INSPIRE].
  3. [3]
    S. Dubovsky, V. Gorbenko and M. Mirbabayi, Asymptotic fragility, near AdS 2 holography and \( T\overline{T} \), JHEP 09 (2017) 136 [arXiv:1706.06604] [INSPIRE].
  4. [4]
    S. Dubovsky, V. Gorbenko and M. Mirbabayi, Natural Tuning: Towards A Proof of Concept, JHEP 09 (2013) 045 [arXiv:1305.6939] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    S. Dubovsky, R. Flauger and V. Gorbenko, Effective String Theory Revisited, JHEP 09 (2012) 044 [arXiv:1203.1054] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    M. Caselle, D. Fioravanti, F. Gliozzi and R. Tateo, Quantisation of the effective string with TBA, JHEP 07 (2013) 071 [arXiv:1305.1278] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    S. Dubovsky, R. Flauger and V. Gorbenko, Solving the Simplest Theory of Quantum Gravity, JHEP 09 (2012) 133 [arXiv:1205.6805] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    L. McGough, M. Mezei and H. Verlinde, Moving the CFT into the bulk with \( T\overline{T} \), JHEP 04 (2018) 010 [arXiv:1611.03470] [INSPIRE].
  9. [9]
    V. Shyam, Background independent holographic dual to \( T\overline{T} \) deformed CFT with large central charge in 2 dimensions, JHEP 10 (2017) 108 [arXiv:1707.08118] [INSPIRE].
  10. [10]
    P. Kraus, J. Liu and D. Marolf, Cutoff AdS 3 versus the \( T\overline{T} \) deformation, JHEP 07 (2018) 027 [arXiv:1801.02714] [INSPIRE].
  11. [11]
    W. Cottrell and A. Hashimoto, Comments on \( T\overline{T} \) double trace deformations and boundary conditions, Phys. Lett. B 789 (2019) 251 [arXiv:1801.09708] [INSPIRE].
  12. [12]
    A. Giveon, N. Itzhaki and D. Kutasov, \( \mathrm{T}\overline{\mathrm{T}} \) and LST, JHEP 07 (2017) 122 [arXiv:1701.05576] [INSPIRE].
  13. [13]
    A. Giveon, N. Itzhaki and D. Kutasov, A solvable irrelevant deformation of AdS 3 /CF T 2, JHEP 12 (2017) 155 [arXiv:1707.05800] [INSPIRE].
  14. [14]
    M. Asrat, A. Giveon, N. Itzhaki and D. Kutasov, Holography Beyond AdS, Nucl. Phys. B 932 (2018) 241 [arXiv:1711.02690] [INSPIRE].
  15. [15]
    G. Giribet, \( T\overline{T} \) -deformations, AdS/CFT and correlation functions, JHEP 02 (2018) 114 [arXiv:1711.02716] [INSPIRE].
  16. [16]
    J. Cardy, The \( T\overline{T} \) deformation of quantum field theory as random geometry, JHEP 10 (2018) 186 [arXiv:1801.06895] [INSPIRE].
  17. [17]
    O. Aharony and T. Vaknin, The TT* deformation at large central charge, JHEP 05 (2018) 166 [arXiv:1803.00100] [INSPIRE].ADSzbMATHGoogle Scholar
  18. [18]
    M. Guica, An integrable Lorentz-breaking deformation of two-dimensional CFTs, SciPost Phys. 5 (2018) 048 [arXiv:1710.08415] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT Correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [INSPIRE].
  20. [20]
    S. El-Showk and M. Guica, Kerr/CFT, dipole theories and nonrelativistic CFTs, JHEP 12 (2012) 009 [arXiv:1108.6091] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    S. Chakraborty, A. Giveon and D. Kutasov, \( J\overline{T} \) deformed CF T 2 and string theory, JHEP 10 (2018) 057 [arXiv:1806.09667] [INSPIRE].
  22. [22]
    G. Compère, W. Song and A. Strominger, New Boundary Conditions for AdS 3, JHEP 05 (2013) 152 [arXiv:1303.2662] [INSPIRE].
  23. [23]
    D.M. Hofman and A. Strominger, Chiral Scale and Conformal Invariance in 2D Quantum Field Theory, Phys. Rev. Lett. 107 (2011) 161601 [arXiv:1107.2917] [INSPIRE].
  24. [24]
    J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].
  25. [25]
    E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].
  26. [26]
    S. Giombi, V. Kirilin and E. Perlmutter, Double-Trace Deformations of Conformal Correlations, JHEP 02 (2018) 175 [arXiv:1801.01477] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    S.S. Gubser and I.R. Klebanov, A Universal result on central charges in the presence of double trace deformations, Nucl. Phys. B 656 (2003) 23 [hep-th/0212138] [INSPIRE].
  28. [28]
    I. Papadimitriou, Multi-Trace Deformations in AdS/CFT: Exploring the Vacuum Structure of the Deformed CFT, JHEP 05 (2007) 075 [hep-th/0703152] [INSPIRE].
  29. [29]
    V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    P. Kraus and F. Larsen, Partition functions and elliptic genera from supergravity, JHEP 01 (2007) 002 [hep-th/0607138] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    K. Skenderis and S.N. Solodukhin, Quantum effective action from the AdS /CFT correspondence, Phys. Lett. B 472 (2000) 316 [hep-th/9910023] [INSPIRE].
  33. [33]
    P. Kraus, Lectures on black holes and the AdS 3 /CF T 2 correspondence, Lect. Notes Phys. 755 (2008) 193 [hep-th/0609074] [INSPIRE].
  34. [34]
    S.B. Treiman, E. Witten, R. Jackiw and B. Zumino, Current Algebra And Anomalies, Singapore, Singapore, World Scientific (1985) [INSPIRE].
  35. [35]
    J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].
  36. [36]
    G. Barnich and G. Compère, Surface charge algebra in gauge theories and thermodynamic integrability, J. Math. Phys. 49 (2008) 042901 [arXiv:0708.2378] [INSPIRE].
  37. [37]
    G. Compère, Symmetries and conservation laws in Lagrangian gauge theories with applications to the mechanics of black holes and to gravity in three dimensions, Ph.D. Thesis, Brussels U. (2007) [arXiv:0708.3153] [INSPIRE].
  38. [38]
    G. Barnich and C. Troessaert, Aspects of the BMS/CFT correspondence, JHEP 05 (2010) 062 [arXiv:1001.1541] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    G. Compère, P. Mao, A. Seraj and M.M. Sheikh-Jabbari, Symplectic and Killing symmetries of AdS 3 gravity: holographic vs boundary gravitons, JHEP 01 (2016) 080 [arXiv:1511.06079] [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2019

Authors and Affiliations

  1. 1.Institut de Physique Théorique, CEA SaclayGif-sur-YvetteFrance
  2. 2.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  3. 3.Nordita, Stockholm University and KTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations