Advertisement

Journal of High Energy Physics

, 2019:196 | Cite as

All tree-level correlators in AdS5×S5 supergravity: hidden ten-dimensional conformal symmetry

  • Simon Caron-HuotEmail author
  • Anh-Khoi Trinh
Open Access
Regular Article - Theoretical Physics
  • 13 Downloads

Abstract

We study correlators of four protected (half-BPS) operators in strongly coupled supersymmetric Yang-Mills theory. These are dual to tree-level supergravity amplitudes on AdS5×S5 for various spherical harmonics on the five-sphere. We use conformal field theory methods, in particular a recently obtained Lorentzian inversion formula, to analytically bootstrap these correlators. The extracted 1/N2 double-trace anomalous dimensions confirm a simple pattern recently conjectured by Aprile, Drummond, Heslop and Paul. We explain this pattern by an unexpected ten-dimensional conformal symmetry which appears to be enjoyed by tree-level supergravity (or a suitable subsector of it). The symmetry combines all spherical harmonics into a single ten-dimensional object, and yields compact expressions for the leading logarithmic part of any half-BPS correlator at each loop order.

Keywords

AdS-CFT Correspondence Conformal Field Theory 1/N Expansion Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    E. D’Hoker, D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Graviton exchange and complete four point functions in the AdS/CFT correspondence, Nucl. Phys. B 562 (1999) 353 [hep-th/9903196] [INSPIRE].
  3. [3]
    G. Arutyunov and S. Frolov, Four point functions of lowest weight CPOs in N = 4 SYM(4) in supergravity approximation, Phys. Rev. D 62 (2000) 064016 [hep-th/0002170] [INSPIRE].
  4. [4]
    S. Lee, S. Minwalla, M. Rangamani and N. Seiberg, Three point functions of chiral operators in D = 4, N = 4 SYM at large N , Adv. Theor. Math. Phys. 2 (1998) 697 [hep-th/9806074] [INSPIRE].
  5. [5]
    B. Eden, A.C. Petkou, C. Schubert and E. Sokatchev, Partial nonrenormalization of the stress tensor four point function in N = 4 SYM and AdS/CFT, Nucl. Phys. B 607 (2001) 191 [hep-th/0009106] [INSPIRE].
  6. [6]
    M. Gary, S.B. Giddings and J. Penedones, Local bulk S-matrix elements and CFT singularities, Phys. Rev. D 80 (2009) 085005 [arXiv:0903.4437] [INSPIRE].
  7. [7]
    J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03 (2011) 025 [arXiv:1011.1485] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    J. Maldacena, D. Simmons-Duffin and A. Zhiboedov, Looking for a bulk point, JHEP 01 (2017) 013 [arXiv:1509.03612] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    G. Arutyunov, F.A. Dolan, H. Osborn and E. Sokatchev, Correlation functions and massive Kaluza-Klein modes in the AdS/CFT correspondence, Nucl. Phys. B 665 (2003) 273 [hep-th/0212116] [INSPIRE].
  10. [10]
    G. Arutyunov and E. Sokatchev, On a large N degeneracy in N = 4 SYM and the AdS/CFT correspondence, Nucl. Phys. B 663 (2003) 163 [hep-th/0301058] [INSPIRE].
  11. [11]
    L. Berdichevsky and P. Naaijkens, Four-point functions of different-weight operators in the AdS/CFT correspondence, JHEP 01 (2008) 071 [arXiv:0709.1365] [INSPIRE].
  12. [12]
    L.I. Uruchurtu, Four-point correlators with higher weight superconformal primaries in the AdS/CFT Correspondence, JHEP 03 (2009) 133 [arXiv:0811.2320] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    L.I. Uruchurtu, Next-next-to-extremal Four Point Functions of N = 4 1/2 BPS Operators in the AdS/CFT Correspondence, JHEP 08 (2011) 133 [arXiv:1106.0630] [INSPIRE].
  14. [14]
    M. Nirschl and H. Osborn, Superconformal Ward identities and their solution, Nucl. Phys. B 711 (2005) 409 [hep-th/0407060] [INSPIRE].
  15. [15]
    F.A. Dolan, M. Nirschl and H. Osborn, Conjectures for large N superconformal N = 4 chiral primary four point functions, Nucl. Phys. B 749 (2006) 109 [hep-th/0601148] [INSPIRE].
  16. [16]
    L. Rastelli and X. Zhou, Mellin amplitudes for AdS 5 × S 5, Phys. Rev. Lett. 118 (2017) 091602 [arXiv:1608.06624] [INSPIRE].
  17. [17]
    A.L. Fitzpatrick, J. Kaplan, J. Penedones, S. Raju and B.C. van Rees, A Natural Language for AdS/CFT Correlators, JHEP 11 (2011) 095 [arXiv:1107.1499] [INSPIRE].
  18. [18]
    G. Arutyunov, S. Frolov, R. Klabbers and S. Savin, Towards 4-point correlation functions of any \( \frac{1}{2} \) -BPS operators from supergravity, JHEP 04 (2017) 005 [arXiv:1701.00998] [INSPIRE].
  19. [19]
    G. Arutyunov, R. Klabbers and S. Savin, Four-point functions of 1/2-BPS operators of any weights in the supergravity approximation, JHEP 09 (2018) 118 [arXiv:1808.06788] [INSPIRE].
  20. [20]
    A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The Analytic Bootstrap and AdS Superhorizon Locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].
  21. [21]
    Z. Komargodski and A. Zhiboedov, Convexity and Liberation at Large Spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    L.F. Alday and A. Zhiboedov, An Algebraic Approach to the Analytic Bootstrap, JHEP 04 (2017) 157 [arXiv:1510.08091] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    L.F. Alday, Large Spin Perturbation Theory for Conformal Field Theories, Phys. Rev. Lett. 119 (2017) 111601 [arXiv:1611.01500] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S. Caron-Huot, Analyticity in Spin in Conformal Theories, JHEP 09 (2017) 078 [arXiv:1703.00278] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    D. Simmons-Duffin, D. Stanford and E. Witten, A spacetime derivation of the Lorentzian OPE inversion formula, JHEP 07 (2018) 085 [arXiv:1711.03816] [INSPIRE].
  26. [26]
    P. Kravchuk and D. Simmons-Duffin, Light-ray operators in conformal field theory, JHEP 11 (2018) 102 [arXiv:1805.00098] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    L.F. Alday, A. Bissi and E. Perlmutter, Holographic Reconstruction of AdS Exchanges from Crossing Symmetry, JHEP 08 (2017) 147 [arXiv:1705.02318] [INSPIRE].
  28. [28]
    J. Liu, E. Perlmutter, V. Rosenhaus and D. Simmons-Duffin, d-dimensional SYK, AdS Loops and 6j Symbols, arXiv:1808.00612 [INSPIRE].
  29. [29]
    L.F. Alday and A. Bissi, Unitarity and positivity constraints for CFT at large central charge, JHEP 07 (2017) 044 [arXiv:1606.09593] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].
  31. [31]
    O. Aharony, L.F. Alday, A. Bissi and E. Perlmutter, Loops in AdS from Conformal Field Theory, JHEP 07 (2017) 036 [arXiv:1612.03891] [INSPIRE].
  32. [32]
    F. Aprile, J.M. Drummond, P. Heslop and H. Paul, Quantum Gravity from Conformal Field Theory, JHEP 01 (2018) 035 [arXiv:1706.02822] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    L.F. Alday and A. Bissi, Loop Corrections to Supergravity on AdS 5 × S 5, Phys. Rev. Lett. 119 (2017) 171601 [arXiv:1706.02388] [INSPIRE].
  34. [34]
    L.F. Alday and S. Caron-Huot, Gravitational S-matrix from CFT dispersion relations, JHEP 12 (2018) 017 [arXiv:1711.02031] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    N. Gromov, V. Kazakov, S. Leurent and D. Volin, Quantum spectral curve for arbitrary state/operator in AdS 5 /CFT 4, JHEP 09 (2015) 187 [arXiv:1405.4857] [INSPIRE].
  37. [37]
    T. Bargheer, J. Caetano, T. Fleury, S. Komatsu and P. Vieira, Handling Handles: Nonplanar Integrability in \( \mathcal{N}=4 \) Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 121 (2018) 231602 [arXiv:1711.05326] [INSPIRE].
  38. [38]
    R. Ben-Israel, A.G. Tumanov and A. Sever, Scattering amplitudes — Wilson loops duality for the first non-planar correction, JHEP 08 (2018) 122 [arXiv:1802.09395] [INSPIRE].
  39. [39]
    C. Cardona, Mellin-(Schwinger) representation of One-loop Witten diagrams in AdS, arXiv:1708.06339 [INSPIRE].
  40. [40]
    E.Y. Yuan, Loops in the Bulk, arXiv:1710.01361 [INSPIRE].
  41. [41]
    E.Y. Yuan, Simplicity in AdS Perturbative Dynamics, arXiv:1801.07283 [INSPIRE].
  42. [42]
    F. Aprile, J. Drummond, P. Heslop and H. Paul, The double-trace spectrum of N = 4 SYM at strong coupling, Phys. Rev. D 98 (2018) 126008 [arXiv:1802.06889] [INSPIRE].
  43. [43]
    F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys. B 678 (2004) 491 [hep-th/0309180] [INSPIRE].
  44. [44]
    A. Bissi and T. Lukowski, Revisiting \( \mathcal{N}=4 \) superconformal blocks, JHEP 02 (2016) 115 [arXiv:1508.02391] [INSPIRE].
  45. [45]
    F.A. Dolan and H. Osborn, On short and semi-short representations for four-dimensional superconformal symmetry, Annals Phys. 307 (2003) 41 [hep-th/0209056] [INSPIRE].
  46. [46]
    D. Chicherin et al., Correlation functions of the chiral stress-tensor multiplet in \( \mathcal{N}=4 \) SYM, JHEP 06 (2015) 198 [arXiv:1412.8718] [INSPIRE].
  47. [47]
    F.A. Dolan, L. Gallot and E. Sokatchev, On four-point functions of 1/2-BPS operators in general dimensions, JHEP 09 (2004) 056 [hep-th/0405180] [INSPIRE].
  48. [48]
    F.A. Dolan and H. Osborn, Conformal partial wave expansions for N = 4 chiral four point functions, Annals Phys. 321 (2006) 581 [hep-th/0412335] [INSPIRE].
  49. [49]
    A.L. Fitzpatrick and J. Kaplan, Unitarity and the Holographic S-matrix, JHEP 10 (2012) 032 [arXiv:1112.4845] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  50. [50]
    F.A. Dolan and H. Osborn, Superconformal symmetry, correlation functions and the operator product expansion, Nucl. Phys. B 629 (2002) 3 [hep-th/0112251] [INSPIRE].
  51. [51]
    B. Basso, F. Coronado, S. Komatsu, H.T. Lam, P. Vieira and D.-l. Zhong, Asymptotic Four Point Functions, arXiv:1701.04462 [INSPIRE].
  52. [52]
    R. Doobary and P. Heslop, Superconformal partial waves in Grassmannian field theories, JHEP 12 (2015) 159 [arXiv:1508.03611] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  53. [53]
    F. Aprile, J.M. Drummond, P. Heslop and H. Paul, Unmixing Supergravity, JHEP 02 (2018) 133 [arXiv:1706.08456] [INSPIRE].
  54. [54]
    J.M. Drummond, L. Gallot and E. Sokatchev, Superconformal Invariants or How to Relate Four-point AdS Amplitudes, Phys. Lett. B 645 (2007) 95 [hep-th/0610280] [INSPIRE].
  55. [55]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    C. Beem, L. Rastelli and B.C. van Rees, More \( \mathcal{N}=4 \) superconformal bootstrap, Phys. Rev. D 96 (2017) 046014 [arXiv:1612.02363] [INSPIRE].
  57. [57]
    N. Seiberg, Naturalness versus supersymmetric nonrenormalization theorems, Phys. Lett. B 318 (1993) 469 [hep-ph/9309335] [INSPIRE].
  58. [58]
    S.B. Giddings and M. Srednicki, High-energy gravitational scattering and black hole resonances, Phys. Rev. D 77 (2008) 085025 [arXiv:0711.5012] [INSPIRE].
  59. [59]
    F.A. Dolan and H. Osborn, Conformal Partial Waves: Further Mathematical Results, arXiv:1108.6194 [INSPIRE].
  60. [60]
    R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, A Mellin space approach to the conformal bootstrap, JHEP 05 (2017) 027 [arXiv:1611.08407] [INSPIRE].
  61. [61]
    R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, Conformal Bootstrap in Mellin Space, Phys. Rev. Lett. 118 (2017) 081601 [arXiv:1609.00572] [INSPIRE].
  62. [62]
    L. Rastelli and X. Zhou, How to Succeed at Holographic Correlators Without Really Trying, JHEP 04 (2018) 014 [arXiv:1710.05923] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    M. Hogervorst and S. Rychkov, Radial Coordinates for Conformal Blocks, Phys. Rev. D 87 (2013) 106004 [arXiv:1303.1111] [INSPIRE].
  64. [64]
    J. Maldacena, Einstein Gravity from Conformal Gravity, arXiv:1105.5632 [INSPIRE].
  65. [65]
    G. Anastasiou and R. Olea, From conformal to Einstein Gravity, Phys. Rev. D 94 (2016) 086008 [arXiv:1608.07826] [INSPIRE].
  66. [66]
    F. Loebbert, M. Mojaza and J. Plefka, Hidden Conformal Symmetry in Tree-Level Graviton Scattering, JHEP 05 (2018) 208 [arXiv:1802.05999] [INSPIRE].
  67. [67]
    P. Dai, R.-N. Huang and W. Siegel, Covariant propagator in AdS 5 × S 5 superspace, JHEP 03 (2010) 001 [arXiv:0911.2211] [INSPIRE].
  68. [68]
    J.H. Schwarz, New formulation of the type IIB superstring action in AdS 5 × S 5, JHEP 09 (2015) 041 [arXiv:1506.07706] [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2019

Authors and Affiliations

  1. 1.Department of PhysicsMcGill UniversityMontréalCanada

Personalised recommendations