Advertisement

Journal of High Energy Physics

, 2019:193 | Cite as

Surface defects in the D4-D8 brane system

  • Giuseppe Dibitetto
  • Nicolò PetriEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

A new class of exact supersymmetric solutions is derived within minimal d = 6 F(4) gauged supergravity. These flows are all characterized by a non-trivial radial profile for the 2-form gauge potential included into the supergravity multiplet. In particular three solutions within this class are featured by an AdS3 foliation of the 6d background and by an AdS6 asymptotic geometry. Secondly, considering the simplest example of these, we give its massive IIA uplift describing a warped solution of the type AdS3 × S2 × S3 fibered over two intervals Ir × Iξ. We interpret this background as the near-horizon of a D4-D8 system on which a bound state D2-NS5-D6 ends producing a surface defect. Finally we discuss its holographic dual interpretation in terms of a \( \mathcal{N} \) = (0, 4) SCFT2 defect theory within the \( \mathcal{N} \) = 2 SCFT5 dual to the AdS6 × S4 massive IIA warped vacuum.

Keywords

AdS-CFT Correspondence D-branes Superstring Vacua 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.L. Cardy, Conformal invariance and surface critical behavior, Nucl. Phys. B 240 (1984) 514 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J.L. Cardy, Boundary conditions, fusion rules and the Verlinde formula, Nucl. Phys. B 324 (1989) 581 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    J.L. Cardy and D.C. Lewellen, Bulk and boundary operators in conformal field theory, Phys. Lett. B 259 (1991) 274 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    D.M. McAvity and H. Osborn, Energy momentum tensor in conformal field theories near a boundary, Nucl. Phys. B 406 (1993) 655 [hep-th/9302068] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    D.M. McAvity and H. Osborn, Conformal field theories near a boundary in general dimensions, Nucl. Phys. B 455 (1995) 522 [cond-mat/9505127] [INSPIRE].
  6. [6]
    R.E. Behrend, P.A. Pearce, V.B. Petkova and J.-B. Zuber, Boundary conditions in rational conformal field theories, Nucl. Phys. B 570 (2000) 525 [Erratum ibid. B 579 (2000) 707] [hep-th/9908036] [INSPIRE].
  7. [7]
    A. Karch and L. Randall, Open and closed string interpretation of SUSY CFT’s on branes with boundaries, JHEP 06 (2001) 063 [hep-th/0105132] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    O. DeWolfe, D.Z. Freedman and H. Ooguri, Holography and defect conformal field theories, Phys. Rev. D 66 (2002) 025009 [hep-th/0111135] [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    C. Bachas, J. de Boer, R. Dijkgraaf and H. Ooguri, Permeable conformal walls and holography, JHEP 06 (2002) 027 [hep-th/0111210] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    J. Erdmenger, Z. Guralnik and I. Kirsch, Four-dimensional superconformal theories with interacting boundaries or defects, Phys. Rev. D 66 (2002) 025020 [hep-th/0203020] [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    N.R. Constable, J. Erdmenger, Z. Guralnik and I. Kirsch, Intersecting D3 branes and holography, Phys. Rev. D 68 (2003) 106007 [hep-th/0211222] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  12. [12]
    O. Aharony, O. DeWolfe, D.Z. Freedman and A. Karch, Defect conformal field theory and locally localized gravity, JHEP 07 (2003) 030 [hep-th/0303249] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    D. Bak, M. Gutperle and S. Hirano, A dilatonic deformation of AdS 5 and its field theory dual, JHEP 05 (2003) 072 [hep-th/0304129] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A.B. Clark, D.Z. Freedman, A. Karch and M. Schnabl, Dual of the Janus solution: an interface conformal field theory, Phys. Rev. D 71 (2005) 066003 [hep-th/0407073] [INSPIRE].ADSGoogle Scholar
  15. [15]
    A. Kapustin, Wilson-’t Hooft operators in four-dimensional gauge theories and S-duality, Phys. Rev. D 74 (2006) 025005 [hep-th/0501015] [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    A. Clark and A. Karch, Super Janus, JHEP 10 (2005) 094 [hep-th/0506265] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    E. D’Hoker, J. Estes and M. Gutperle, Interface Yang-Mills, supersymmetry and Janus, Nucl. Phys. B 753 (2006) 16 [hep-th/0603013] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    E. D’Hoker, J. Estes and M. Gutperle, Ten-dimensional supersymmetric Janus solutions, Nucl. Phys. B 757 (2006) 79 [hep-th/0603012] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    E.I. Buchbinder, J. Gomis and F. Passerini, Holographic gauge theories in background fields and surface operators, JHEP 12 (2007) 101 [arXiv:0710.5170] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS type IIB interface solutions. I. Local solution and supersymmetric Janus, JHEP 06 (2007) 021 [arXiv:0705.0022] [INSPIRE].
  21. [21]
    E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS type IIB interface solutions. II. Flux solutions and multi-Janus, JHEP 06 (2007) 022 [arXiv:0705.0024] [INSPIRE].
  22. [22]
    O. Lunin, 1/2-BPS states in M-theory and defects in the dual CFTs, JHEP 10 (2007) 014 [arXiv:0704.3442] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    D. Gaiotto and E. Witten, Supersymmetric boundary conditions in N = 4 super Yang-Mills theory, J. Statist. Phys. 135 (2009) 789 [arXiv:0804.2902] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    D. Gaiotto and E. Witten, Janus configurations, Chern-Simons couplings, and the theta-angle in N = 4 super Yang-Mills theory, JHEP 06 (2010) 097 [arXiv:0804.2907] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    O. Aharony, L. Berdichevsky, M. Berkooz and I. Shamir, Near-horizon solutions for D3-branes ending on 5-branes, Phys. Rev. D 84 (2011) 126003 [arXiv:1106.1870] [INSPIRE].ADSGoogle Scholar
  26. [26]
    M. Chiodaroli, M. Gutperle and L.-Y. Hung, Boundary entropy of supersymmetric Janus solutions, JHEP 09 (2010) 082 [arXiv:1005.4433] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    M. Chiodaroli, E. D’Hoker and M. Gutperle, Simple holographic duals to boundary CFTs, JHEP 02 (2012) 005 [arXiv:1111.6912] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    M. Chiodaroli, E. D’Hoker and M. Gutperle, Holographic duals of boundary CFTs, JHEP 07 (2012) 177 [arXiv:1205.5303] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    M. Gutperle and J. Samani, Holographic RG-flows and boundary CFTs, Phys. Rev. D 86 (2012) 106007 [arXiv:1207.7325] [INSPIRE].ADSGoogle Scholar
  30. [30]
    M. de Leeuw, C. Kristjansen and K. Zarembo, One-point functions in defect CFT and integrability, JHEP 08 (2015) 098 [arXiv:1506.06958] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    M. Billò, V. Gonçalves, E. Lauria and M. Meineri, Defects in conformal field theory, JHEP 04 (2016) 091 [arXiv:1601.02883] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  32. [32]
    P. Karndumri and K. Upathambhakul, Supersymmetric RG flows and Janus from type-II orbifold compactification, Eur. Phys. J. C 77 (2017) 455 [arXiv:1704.00538] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    G. Dibitetto and N. Petri, BPS objects in D = 7 supergravity and their M-theory origin, JHEP 12 (2017) 041 [arXiv:1707.06152] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    G. Dibitetto and N. Petri, 6d surface defects from massive type IIA, JHEP 01 (2018) 039 [arXiv:1707.06154] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    M. Del Zotto and G. Lockhart, Universal features of BPS strings in six-dimensional SCFTs, JHEP 08 (2018) 173 [arXiv:1804.09694] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    P. Karndumri and P. Nuchino, Supersymmetric solutions of matter-coupled 7D N = 2 gauged supergravity, Phys. Rev. D 98 (2018) 086012 [arXiv:1806.04064] [INSPIRE].ADSGoogle Scholar
  37. [37]
    A. Brandhuber and Y. Oz, The D4-D8 brane system and five-dimensional fixed points, Phys. Lett. B 460 (1999) 307 [hep-th/9905148] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56 [hep-th/9702198] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S. Ferrara, A. Kehagias, H. Partouche and A. Zaffaroni, AdS 6 interpretation of 5D superconformal field theories, Phys. Lett. B 431 (1998) 57 [hep-th/9804006] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    O. DeWolfe, A. Hanany, A. Iqbal and E. Katz, Five-branes, seven-branes and five-dimensional E n field theories, JHEP 03 (1999) 006 [hep-th/9902179] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  42. [42]
    D.L. Jafferis and S.S. Pufu, Exact results for five-dimensional superconformal field theories with gravity duals, JHEP 05 (2014) 032 [arXiv:1207.4359] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    B. Assel, J. Estes and M. Yamazaki, Wilson loops in 5d N = 1 SCFTs and AdS/CFT, Annales Henri Poincaré 15 (2014) 589 [arXiv:1212.1202] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    O. Bergman and D. Rodriguez-Gomez, Probing the Higgs branch of 5d fixed point theories with dual giant gravitons in AdS 6, JHEP 12 (2012) 047 [arXiv:1210.0589] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  45. [45]
    O. Bergman and D. Rodriguez-Gomez, 5d quivers and their AdS 6 duals, JHEP 07 (2012) 171 [arXiv:1206.3503] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    A. Passias, A note on supersymmetric AdS 6 solutions of massive type IIA supergravity, JHEP 01 (2013) 113 [arXiv:1209.3267] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    Y. Lozano, E. Ó Colgáin, D. Rodríguez-Gómez and K. Sfetsos, Supersymmetric AdS6 via T duality, Phys. Rev. Lett. 110 (2013) 231601 [arXiv:1212.1043] [INSPIRE].
  48. [48]
    P. Karndumri, Holographic RG flows in six dimensional F(4) gauged supergravity, JHEP 01 (2013) 134 [Erratum ibid. 06 (2015) 165] [arXiv:1210.8064] [INSPIRE].
  49. [49]
    O. Bergman, D. Rodríguez-Gómez and G. Zafrir, 5d superconformal indices at large N and holography, JHEP 08 (2013) 081 [arXiv:1305.6870] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    Y. Lozano, E. Ó Colgáin and D. Rodríguez-Gómez, Hints of 5d fixed point theories from non-Abelian T-duality, JHEP 05 (2014) 009 [arXiv:1311.4842] [INSPIRE].
  51. [51]
    F. Apruzzi, M. Fazzi, A. Passias, D. Rosa and A. Tomasiello, AdS 6 solutions of type-II supergravity, JHEP 11 (2014) 099 [Erratum ibid. 05 (2015) 012] [arXiv:1406.0852] [INSPIRE].
  52. [52]
    A. Pini and D. Rodríguez-Gómez, Gauge/gravity duality and RG flows in 5d gauge theories, Nucl. Phys. B 884 (2014) 612 [arXiv:1402.6155] [INSPIRE].
  53. [53]
    H. Kim, N. Kim and M. Suh, Supersymmetric AdS 6 solutions of type IIB supergravity, Eur. Phys. J. C 75 (2015) 484 [arXiv:1506.05480] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    P. Karndumri and J. Louis, Supersymmetric AdS 6 vacua in six-dimensional N = (1, 1) gauged supergravity, JHEP 01 (2017) 069 [arXiv:1612.00301] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  55. [55]
    E. D’Hoker, M. Gutperle, A. Karch and C.F. Uhlemann, Warped AdS 6 × S 2 in type IIB supergravity I: local solutions, JHEP 08 (2016) 046 [arXiv:1606.01254] [INSPIRE].CrossRefzbMATHGoogle Scholar
  56. [56]
    E. D’Hoker, M. Gutperle and C.F. Uhlemann, Holographic duals for five-dimensional superconformal quantum field theories, Phys. Rev. Lett. 118 (2017) 101601 [arXiv:1611.09411] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    A. Passias and P. Richmond, Perturbing AdS 6 ×w S 4 : linearised equations and spin-2 spectrum, JHEP 07 (2018) 058 [arXiv:1804.09728] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    O. Bergman, D. Rodríguez-Gómez and C.F. Uhlemann, Testing AdS 6 /CFT 5 in type IIB with stringy operators, JHEP 08 (2018) 127 [arXiv:1806.07898] [INSPIRE].
  59. [59]
    I. Bah, A. Passias and P. Weck, Holographic duals of five-dimensional SCFTs on a Riemann surface, arXiv:1807.06031 [INSPIRE].
  60. [60]
    M. Suh, D4-branes wrapped on supersymmetric four-cycles, arXiv:1809.03517 [INSPIRE].
  61. [61]
    M. Suh, D4-branes wrapped on supersymmetric four-cycles from matter coupled F(4) gauged supergravity, arXiv:1810.00675 [INSPIRE].
  62. [62]
    M. Cvetič, H. Lü and C.N. Pope, Gauged six-dimensional supergravity from massive type IIA, Phys. Rev. Lett. 83 (1999) 5226 [hep-th/9906221] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    L.J. Romans, The F(4) gauged supergravity in six-dimensions, Nucl. Phys. B 269 (1986) 691 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    D. Youm, Partially localized intersecting BPS branes, Nucl. Phys. B 556 (1999) 222 [hep-th/9902208] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    Y. Imamura, 1/4 BPS solutions in massive IIA supergravity, Prog. Theor. Phys. 106 (2001) 653 [hep-th/0105263] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    M. Cvetič, H. Lü, C.N. Pope and J.F. Vazquez-Poritz, AdS in warped space-times, Phys. Rev. D 62 (2000) 122003 [hep-th/0005246] [INSPIRE].ADSGoogle Scholar
  67. [67]
    L. Andrianopoli, R. D’Auria and S. Vaula, Matter coupled F(4) gauged supergravity Lagrangian, JHEP 05 (2001) 065 [hep-th/0104155] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    C. Núñez, I.Y. Park, M. Schvellinger and T.A. Tran, Supergravity duals of gauge theories from F(4) gauged supergravity in six-dimensions, JHEP 04 (2001) 025 [hep-th/0103080] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  69. [69]
    H.J. Boonstra, B. Peeters and K. Skenderis, Brane intersections, anti-de Sitter space-times and dual superconformal theories, Nucl. Phys. B 533 (1998) 127 [hep-th/9803231] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  70. [70]
    F. Apruzzi, M. Fazzi, D. Rosa and A. Tomasiello, All AdS 7 solutions of type-II supergravity, JHEP 04 (2014) 064 [arXiv:1309.2949] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    A. Passias, A. Rota and A. Tomasiello, Universal consistent truncation for 6d/7d gauge/gravity duals, JHEP 10 (2015) 187 [arXiv:1506.05462] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    J. Jeong, O. Kelekci and E. O Colgain, An alternative IIB embedding of F(4) gauged supergravity, JHEP 05 (2013) 079 [arXiv:1302.2105] [INSPIRE].
  73. [73]
    L.J. Romans, Massive N = 2a supergravity in ten-dimensions, Phys. Lett. B 169 (1986) 374 [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    A. Van Proeyen, Tools for supersymmetry, Ann. U. Craiova Phys. 9 (1999) 1 [hep-th/9910030] [INSPIRE].Google Scholar
  75. [75]
    E. Bergshoeff, H. Samtleben and E. Sezgin, The gaugings of maximal D = 6 supergravity, JHEP 03 (2008) 068 [arXiv:0712.4277] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  76. [76]
    G. Dibitetto, A. Guarino and D. Roest, How to halve maximal supergravity, JHEP 06 (2011) 030 [arXiv:1104.3587] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2019

Authors and Affiliations

  1. 1.Institutionen för fysik och astronomiUniversity of UppsalaUppsalaSweden
  2. 2.Department of MathematicsBoğaziçi UniversityIstanbulTurkey

Personalised recommendations