Advertisement

Journal of High Energy Physics

, 2019:185 | Cite as

Dark matter in the KL moduli stabilization scenario with SUSY breaking sector from \( \mathcal{N} \) = 1 SQCD

  • Thaisa C. da C. GuioEmail author
  • Ernany R. Schmitz
Open Access
Regular Article - Theoretical Physics
  • 8 Downloads

Abstract

We investigate neutralino dark matter from a string/M-theory perspective. Using the Kallosh-Linde (KL) scenario to stabilize the string moduli requires supersymmetry breaking for uplifting to a de Sitter vacuum. We consider the free magnetic dual description of \( \mathcal{N} \) = 1 SUSY QCD with massive flavours, the Intriligator-Seiberg-Shih model (ISS), as an F-term dynamical SUSY breaking sector. This framework allows for a gravitino mass in the TeV range. Moreover, due to the plethora of particles from the ISS sector, we investigate the consequences of coupling the MSSM with the KL-ISS setup to obtain constraints from both late entropy production and the dark matter relic density. In addition to thermal neutralino production, we consider neutralino production via the decays of gravitinos and ISS fields.

Keywords

Supersymmetry Phenomenology Strings and branes phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    V.C. Rubin, N. Thonnard and W.K. Ford Jr., Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605/R = 4kpc/to UGC 2885/R = 122 kpc/, Astrophys. J. 238 (1980) 471 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A.N. Taylor, S. Dye, T.J. Broadhurst, N. Benítez and E. van Kampen, Gravitational lens magnification and the mass of abell 1689, Astrophys. J. 501 (1998) 539 [astro-ph/9801158] [INSPIRE].
  3. [3]
    Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  4. [4]
    R.D. Peccei and H.R. Quinn, Constraints Imposed by CP Conservation in the Presence of Instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].ADSGoogle Scholar
  5. [5]
    R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    H.P. Nilles, Supersymmetry, Supergravity and Particle Physics, Phys. Rept. 110 (1984) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S.P. Martin, A supersymmetry primer, hep-ph/9709356 [INSPIRE].
  8. [8]
    M. Drees, R. Godbole and P. Roy, Theory and phenomenology of sparticles: An account of four-dimensional N = 1 supersymmetry in high energy physics, World Scientific, Hackensack, U.S.A., (2004).Google Scholar
  9. [9]
    N. Bernal, C. Garcia-Cely and R. Rosenfeld, WIMP and SIMP Dark Matter from the Spontaneous Breaking of a Global Group, JCAP 04 (2015) 012 [arXiv:1501.01973] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    B.L. Sánchez-Vega, J.C. Montero and E.R. Schmitz, Complex Scalar DM in a B-L Model, Phys. Rev. D 90 (2014) 055022 [arXiv:1404.5973] [INSPIRE].ADSGoogle Scholar
  11. [11]
    B.L. Sánchez-Vega and E.R. Schmitz, Fermionic dark matter and neutrino masses in a B-L model, Phys. Rev. D 92 (2015) 053007 [arXiv:1505.03595] [INSPIRE].ADSGoogle Scholar
  12. [12]
    S. Dimopoulos and H. Georgi, Softly Broken Supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    G.R. Farrar and P. Fayet, Phenomenology of the Production, Decay and Detection of New Hadronic States Associated with Supersymmetry, Phys. Lett. 76B (1978) 575 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    P. Fayet, Supergauge Invariant Extension of the Higgs Mechanism and a Model for the electron and Its Neutrino, Nucl. Phys. B 90 (1975) 104 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    P. Fayet, Spontaneously Broken Supersymmetric Theories of Weak, Electromagnetic and Strong Interactions, Phys. Lett. 69B (1977) 489 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. Salam and J.A. Strathdee, Supersymmetry and Fermion Number Conservation, Nucl. Phys. B 87 (1975) 85 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    H. Pagels and J.R. Primack, Supersymmetry, Cosmology and New TeV Physics, Phys. Rev. Lett. 48 (1982) 223 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    P. Candelas and X. de la Ossa, Moduli Space of Calabi-Yau Manifolds, Nucl. Phys. B 355 (1991) 455 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    B.R. Greene, String theory on Calabi-Yau manifolds, in Fields, strings and duality. Proceedings, Summer School, Theoretical Advanced Study Institute in Elementary Particle Physics, TASI’96, Boulder, U.S.A., June 2–28, 1996, pp. 543–726, 1996, hep-th/9702155 [INSPIRE].
  20. [20]
    D. Baumann and L. McAllister, Inflation and String Theory, Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2015, [ https://doi.org/10.1017/CBO9781316105733] [arXiv:1404.2601] [INSPIRE].
  21. [21]
    J. Polonyi, Budapest preprint KFKI-1977-93, unpublished.Google Scholar
  22. [22]
    G.D. Coughlan, W. Fischler, E.W. Kolb, S. Raby and G.G. Ross, Cosmological Problems for the Polonyi Potential, Phys. Lett. 131B (1983) 59 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. Nakamura and M. Yamaguchi, A Note on Polonyi Problem, Phys. Lett. B 655 (2007) 167 [arXiv:0707.4538] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].
  26. [26]
    R. Kallosh and A.D. Linde, Landscape, the scale of SUSY breaking, and inflation, JHEP 12 (2004) 004 [hep-th/0411011] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP 04 (2006) 021 [hep-th/0602239] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    A. Giveon and D. Kutasov, Brane dynamics and gauge theory, Rev. Mod. Phys. 71 (1999) 983 [hep-th/9802067] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    A. Giveon, D. Kutasov, J. McOrist and A.B. Royston, D-Term Supersymmetry Breaking from Branes, Nucl. Phys. B 822 (2009) 106 [arXiv:0904.0459] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    H. Ooguri and Y. Ookouchi, Meta-Stable Supersymmetry Breaking Vacua on Intersecting Branes, Phys. Lett. B 641 (2006) 323 [hep-th/0607183] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    A. Klemm, B. Lian, S.S. Roan and S.-T. Yau, Calabi-Yau fourfolds for M-theory and F-theory compactifications, Nucl. Phys. B 518 (1998) 515 [hep-th/9701023] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    A. Sen, Orientifold limit of F-theory vacua, Phys. Rev. D 55 (1997) R7345 [hep-th/9702165] [INSPIRE].ADSMathSciNetGoogle Scholar
  34. [34]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].ADSMathSciNetGoogle Scholar
  35. [35]
    S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four folds, Nucl. Phys. B 584 (2000) 69 [Erratum ibid. B 608 (2001) 477] [hep-th/9906070] [INSPIRE].
  36. [36]
    E. Witten, Nonperturbative superpotentials in string theory, Nucl. Phys. B 474 (1996) 343 [hep-th/9604030] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  37. [37]
    E. Witten, Dynamical Breaking of Supersymmetry, Nucl. Phys. B 188 (1981) 513 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    E. Witten, Constraints on Supersymmetry Breaking, Nucl. Phys. B 202 (1982) 253 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    I. Affleck, M. Dine and N. Seiberg, Dynamical Supersymmetry Breaking in Chiral Theories, Phys. Lett. 137B (1984) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    I. Affleck, M. Dine and N. Seiberg, Dynamical Supersymmetry Breaking in Supersymmetric QCD, Nucl. Phys. B 241 (1984) 493 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    I. Affleck, M. Dine and N. Seiberg, Exponential Hierarchy From Dynamical Supersymmetry Breaking, Phys. Lett. 140B (1984) 59 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    I. Affleck, M. Dine and N. Seiberg, Dynamical Supersymmetry Breaking in Four-Dimensions and Its Phenomenological Implications, Nucl. Phys. B 256 (1985) 557 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    Y. Shadmi and Y. Shirman, Dynamical supersymmetry breaking, Rev. Mod. Phys. 72 (2000) 25 [hep-th/9907225] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  44. [44]
    G.F. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].
  45. [45]
    J. Terning, TASI 2002 lectures: Nonperturbative supersymmetry, in Particle physics and cosmology: The quest for physics beyond the standard model(s). Proceedings, Theoretical Advanced Study Institute, TASI 2002, Boulder, U.S.A., June 3–28, 2002, pp. 343–443, hep-th/0306119 [INSPIRE].
  46. [46]
    K.A. Intriligator and N. Seiberg, Lectures on supersymmetric gauge theories and electric-magnetic duality, Nucl. Phys. Proc. Suppl. 45BC (1996) 1 [hep-th/9509066] [INSPIRE].
  47. [47]
    N. Seiberg, Exact results on the space of vacua of four-dimensional SUSY gauge theories, Phys. Rev. D 49 (1994) 6857 [hep-th/9402044] [INSPIRE].ADSMathSciNetGoogle Scholar
  48. [48]
    E. Dudas, A. Linde, Y. Mambrini, A. Mustafayev and K.A. Olive, Strong moduli stabilization and phenomenology, Eur. Phys. J. C 73 (2013) 2268 [arXiv:1209.0499] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    R. Kallosh, A. Linde, K.A. Olive and T. Rube, Chaotic inflation and supersymmetry breaking, Phys. Rev. D 84 (2011) 083519 [arXiv:1106.6025] [INSPIRE].ADSGoogle Scholar
  50. [50]
    G.F. Giudice and A. Masiero, A Natural Solution to the μ-Problem in Supergravity Theories, Phys. Lett. B 206 (1988) 480 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J.L. Evans, M. Ibe, K.A. Olive and T.T. Yanagida, Universality in Pure Gravity Mediation, Eur. Phys. J. C 73 (2013) 2468 [arXiv:1302.5346] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    J.L. Evans, K.A. Olive, M. Ibe and T.T. Yanagida, Non-Universalities in Pure Gravity Mediation, Eur. Phys. J. C 73 (2013) 2611 [arXiv:1305.7461] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    A. Linde, Y. Mambrini and K.A. Olive, Supersymmetry Breaking due to Moduli Stabilization in String Theory, Phys. Rev. D 85 (2012) 066005 [arXiv:1111.1465] [INSPIRE].ADSGoogle Scholar
  54. [54]
    M.A.G. Garcia and K.A. Olive, Affleck-Dine Baryogenesis and Inflation in Supergravity with Strongly Stabilized Moduli, JCAP 09 (2013) 007 [arXiv:1306.6119] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    I. Affleck and M. Dine, A New Mechanism for Baryogenesis, Nucl. Phys. B 249 (1985) 361 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    T. Konstandin, Quantum Transport and Electroweak Baryogenesis, Phys. Usp. 56 (2013) 747 [arXiv:1302.6713] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    D.E. Morrissey and M.J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14 (2012) 125003 [arXiv:1206.2942] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton, New Jersey, U.S.A., (1992).zbMATHGoogle Scholar
  59. [59]
    E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Yang-Mills Theories with Local Supersymmetry: Lagrangian, Transformation Laws and SuperHiggs Effect, Nucl. Phys. B 212 (1983) 413 [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello and P. van Nieuwenhuizen, Spontaneous Symmetry Breaking and Higgs Effect in Supergravity Without Cosmological Constant, Nucl. Phys. B 147 (1979) 105 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    M. Endo, F. Takahashi and T.T. Yanagida, Inflaton Decay in Supergravity, Phys. Rev. D 76 (2007) 083509 [arXiv:0706.0986] [INSPIRE].ADSMathSciNetGoogle Scholar
  62. [62]
    J.L. Evans, M.A.G. Garcia and K.A. Olive, The Moduli and Gravitino (non)-Problems in Models with Strongly Stabilized Moduli, JCAP 03 (2014) 022 [arXiv:1311.0052] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    M. Dine, L. Randall and S.D. Thomas, Baryogenesis from flat directions of the supersymmetric standard model, Nucl. Phys. B 458 (1996) 291 [hep-ph/9507453] [INSPIRE].
  64. [64]
    A.D. Linde, Relaxing the cosmological moduli problem, Phys. Rev. D 53 (1996) R4129 [hep-th/9601083] [INSPIRE].ADSGoogle Scholar
  65. [65]
    K. Nakayama, F. Takahashi and T.T. Yanagida, On the Adiabatic Solution to the Polonyi/Moduli Problem, Phys. Rev. D 84 (2011) 123523 [arXiv:1109.2073] [INSPIRE].ADSGoogle Scholar
  66. [66]
    T. Moroi, Effects of the gravitino on the inflationary universe, Ph.D. thesis, Tohoku U., 1995. hep-ph/9503210 [INSPIRE].
  67. [67]
    R. Barbier et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1 [hep-ph/0406039] [INSPIRE].
  68. [68]
    G. Mangano, G. Miele, S. Pastor, T. Pinto, O. Pisanti and P.D. Serpico, Relic neutrino decoupling including flavor oscillations, Nucl. Phys. B 729 (2005) 221 [hep-ph/0506164] [INSPIRE].
  69. [69]
    M. Bolz, A. Brandenburg and W. Buchmüller, Thermal production of gravitinos, Nucl. Phys. B 606 (2001) 518 [Erratum ibid. B 790 (2008) 336] [hep-ph/0012052] [INSPIRE].
  70. [70]
    M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, Big-Bang Nucleosynthesis and Gravitino, Phys. Rev. D 78 (2008) 065011 [arXiv:0804.3745] [INSPIRE].ADSGoogle Scholar
  71. [71]
    H.P. Nilles, K.A. Olive and M. Peloso, The inflatino problem in supergravity inflationary models, Phys. Lett. B 522 (2001) 304 [hep-ph/0107212] [INSPIRE].
  72. [72]
    M. Endo, K. Hamaguchi and F. Takahashi, Moduli/Inflaton Mixing with Supersymmetry Breaking Field, Phys. Rev. D 74 (2006) 023531 [hep-ph/0605091] [INSPIRE].
  73. [73]
    K.S. Jeong and F. Takahashi, A Gravitino-rich Universe, JHEP 01 (2013) 173 [arXiv:1210.4077] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    T. Moroi and L. Randall, Wino cold dark matter from anomaly mediated SUSY breaking, Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527] [INSPIRE].
  75. [75]
    S.P. Martin, Compressed supersymmetry and natural neutralino dark matter from top squark-mediated annihilation to top quarks, Phys. Rev. D 75 (2007) 115005 [hep-ph/0703097] [INSPIRE].
  76. [76]
    S.P. Martin, The top squark-mediated annihilation scenario and direct detection of dark matter in compressed supersymmetry, Phys. Rev. D 76 (2007) 095005 [arXiv:0707.2812] [INSPIRE].ADSGoogle Scholar
  77. [77]
    H.K. Dreiner, M. Krämer and J. Tattersall, How low can SUSY go? Matching, monojets and compressed spectra, EPL 99 (2012) 61001 [arXiv:1207.1613] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    CMS collaboration, Combined search for electroweak production of charginos and neutralinos in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 03 (2018) 160 [arXiv:1801.03957] [INSPIRE].
  79. [79]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].ADSGoogle Scholar
  80. [80]
    T. Moroi, M. Yamaguchi and T. Yanagida, On the solution to the Polonyi problem with O(10 TeV) gravitino mass in supergravity, Phys. Lett. B 342 (1995) 105 [hep-ph/9409367] [INSPIRE].
  81. [81]
    M. Drees and M.M. Nojiri, The neutralino relic density in minimal N = 1 supergravity, Phys. Rev. D 47 (1993) 376 [hep-ph/9207234] [INSPIRE].
  82. [82]
    XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
  83. [83]
    LUX collaboration, Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].
  84. [84]
    PandaX-II collaboration, Dark Matter Results from First 98.7 Days of Data from the PandaX-II Experiment, Phys. Rev. Lett. 117 (2016) 121303 [arXiv:1607.07400] [INSPIRE].
  85. [85]
    J. Ellis, K.A. Olive and P. Sandick, Update on the Direct Detection of Dark Matter in MSSM Models with Non-Universal Higgs Masses, New J. Phys. 11 (2009) 105015 [arXiv:0905.0107] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    D. Hooper and L.-T. Wang, Direct and indirect detection of neutralino dark matter in selected supersymmetry breaking scenarios, Phys. Rev. D 69 (2004) 035001 [hep-ph/0309036] [INSPIRE].
  87. [87]
    DARWIN collaboration, DARWIN: towards the ultimate dark matter detector, JCAP 11 (2016) 017 [arXiv:1606.07001] [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2019

Authors and Affiliations

  1. 1.Bethe Center for Theoretical Physics, Physikalisches Institut der Universität BonnBonnGermany

Personalised recommendations