Journal of High Energy Physics

, 2019:173 | Cite as

Long string scattering in c = 1 string theory

  • Bruno Balthazar
  • Victor A. RodriguezEmail author
  • Xi Yin
Open Access
Regular Article - Theoretical Physics


We study the scattering of long strings in c = 1 string theory, both in the worldsheet description and in the non-singlet sector of the dual matrix quantum mechanics. From the worldsheet perspective, the scattering amplitudes of long strings are obtained from a decoupling limit of open strings amplitudes on FZZT branes, which we compute by integrating Virasoro conformal blocks along with structure constants of boundary Liouville theory. In particular, we study the tree level amplitudes of (1) a long string decaying by emitting a closed string, and (2) the scattering of a pair of long strings. We show that they are indeed well defined as limits of open string amplitudes, and that our results are in striking numerical agreement with computations in the adjoint and bi-adjoint sectors of the dual matrix model (based on proposals of Maldacena and solutions due to Fidkowski), thereby providing strong evidence of the duality.


Bosonic Strings D-branes Long strings M(atrix) Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    I.R. Klebanov, String theory in two-dimensions, talk given at the Spring School on String Theory and Quantum Gravity, April 15-23, Trieste, Italy (1991), hep-th/9108019 [INSPIRE].
  2. [2]
    P.H. Ginsparg and G.W. Moore, Lectures on 2D gravity and 2D string theory, in the proceedings of the Theoretical Advanced Study Institute (TASI 92): From Black Holes and Strings to Particles, June 1-26, Boulder, U.S.A. (1992), hep-th/9304011 [INSPIRE].
  3. [3]
    A. Jevicki, Development in 2− string theory, talk given at the Workshop on String Theory, Gauge Theory and Quantum Gravity, April 28-29, Trieste, Italy (1993), hep-th/9309115 [INSPIRE].
  4. [4]
    J. Polchinski, What is string theory?, talk given at the NATO Advanced Study Institute: Les Houches Summer School, Session 62: Fluctuating Geometries in Statistical Mechanics and Field Theory, August 2-September 9, Les Houches, France (1994), hep-th/9411028 [INSPIRE].
  5. [5]
    E.J. Martinec, Matrix models and 2D string theory, talk given at the 9th Frontiers of Mathematical Physics Summer School on Strings, Gravity and Cosmology, August 2-13, Vancouver, Canada (2004), hep-th/0410136 [INSPIRE].
  6. [6]
    H. Dorn and H.J. Otto, Two and three point functions in Liouville theory, Nucl. Phys. B 429 (1994) 375 [hep-th/9403141] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    A.B. Zamolodchikov and A.B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    J. Teschner, On the Liouville three point function, Phys. Lett. B 363 (1995) 65 [hep-th/9507109] [INSPIRE].
  9. [9]
    J. Teschner, Liouville theory revisited, Class. Quant. Grav. 18 (2001) R153 [hep-th/0104158] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    B. Balthazar, V.A. Rodriguez and X. Yin, The c = 1 string theory S-matrix revisited, arXiv:1705.07151 [INSPIRE].
  11. [11]
    A.B. Zamolodchikov and A.B. Zamolodchikov, Liouville field theory on a pseudosphere, hep-th/0101152 [INSPIRE].
  12. [12]
    V. Fateev, A.B. Zamolodchikov and A.B. Zamolodchikov, Boundary Liouville field theory. 1. Boundary state and boundary two point function, hep-th/0001012 [INSPIRE].
  13. [13]
    J. Teschner, Remarks on Liouville theory with boundary, PoS tmr2000 (2000) 041 [hep-th/0009138] [INSPIRE].
  14. [14]
    J. McGreevy and H.L. Verlinde, Strings from tachyons: the c = 1 matrix reloaded, JHEP 12 (2003) 054 [hep-th/0304224] [INSPIRE].
  15. [15]
    D. Gaiotto, Long strings condensation and FZZT branes, hep-th/0503215 [INSPIRE].
  16. [16]
    J.M. Maldacena, Long strings in two dimensional string theory and non-singlets in the matrix model, JHEP 09 (2005) 078 [hep-th/0503112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    L. Fidkowski, Solving the eigenvalue problem arising from the adjoint sector of the c = 1 matrix model, hep-th/0506132 [INSPIRE].
  18. [18]
    B. Ponsot and J. Teschner, Boundary Liouville field theory: Boundary three point function, Nucl. Phys. B 622 (2002) 309 [hep-th/0110244] [INSPIRE].
  19. [19]
    B. Ponsot and J. Teschner, Structure constant of boundary operators in Liouville field theory, in From integrable models to gauge theories: a volume in honor of Sergei Matinyan, V.G. Gurzadyan and A.G. Sedrakian eds., World Scientific, Singapore (2002).Google Scholar
  20. [20]
    K. Hosomichi, Bulk boundary propagator in Liouville theory on a disc, JHEP 11 (2001) 044 [hep-th/0108093] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    C.-M. Chang, Y.-H. Lin, S.-H. Shao, Y. Wang and X. Yin, Little string amplitudes (and the unreasonable effectiveness of 6D SYM), JHEP 12 (2014) 176 [arXiv:1407.7511] [INSPIRE].
  22. [22]
    A.B. Zamolodchikov, Conformal symmetry in two-dimensions: an explicit recurrence formula for the conformal partial wave amplitude, Commun. Math. Phys. 96 (1984) 419 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    P. Di Francesco and D. Kutasov, Correlation functions in 2D string theory, Phys. Lett. B 261 (1991) 385 [INSPIRE].
  24. [24]
    P. Di Francesco and D. Kutasov, World sheet and space-time physics in two-dimensional (Super)string theory, Nucl. Phys. B 375 (1992) 119 [hep-th/9109005] [INSPIRE].
  25. [25]
    J.L. Karczmarek, Scattering in the adjoint sector of the c = 1 matrix model, JHEP 02 (2009) 011 [arXiv:0809.3543] [INSPIRE].
  26. [26]
    J.E. Bourgine, K. Hosomichi, I. Kostov and Y. Matsuo, Scattering of long folded strings and mixed correlators in the two-matrix model, Nucl. Phys. B 795 (2008) 243 [arXiv:0709.3912] [INSPIRE].
  27. [27]
    K. Demeterfi, A. Jevicki and J.P. Rodrigues, Scattering amplitudes and loop corrections in collective string field theory, Nucl. Phys. B 362 (1991) 173 [INSPIRE].
  28. [28]
    K. Demeterfi, A. Jevicki and J.P. Rodrigues, Scattering amplitudes and loop corrections in collective string field theory. 2., Nucl. Phys. B 365 (1991) 499 [INSPIRE].
  29. [29]
    G. Marchesini and E. Onofri, Planar limit for SU(N ) symmetric quantum dynamical systems, J. Math. Phys. 21 (1980) 1103 [INSPIRE].
  30. [30]
    A. Donos, A. Jevicki and J.P. Rodrigues, Matrix model maps in AdS/CFT, Phys. Rev. D 72 (2005) 125009 [hep-th/0507124] [INSPIRE].
  31. [31]
    P. Betzios and O. Papadoulaki, FZZT branes and non-singlets of matrix quantum mechanics, arXiv:1711.04369 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Bruno Balthazar
    • 1
  • Victor A. Rodriguez
    • 1
    Email author
  • Xi Yin
    • 1
    • 2
  1. 1.Jefferson Physical LaboratoryHarvard UniversityCambridgeU.S.A.
  2. 2.Center for Theoretical Physics, Massachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations