Advertisement

Journal of High Energy Physics

, 2019:172 | Cite as

Molière scattering in quark-gluon plasma: finding point-like scatterers in a liquid

  • Francesco D’Eramo
  • Krishna Rajagopal
  • Yi YinEmail author
Open Access
Regular Article - Theoretical Physics
  • 13 Downloads

Abstract

By finding rare (but not exponentially rare) large-angle deflections of partons within a jet produced in a heavy ion collision, or of such a jet itself, experimentalists can find the weakly coupled short-distance quark and gluon particles (scatterers) within the strongly coupled liquid quark-gluon plasma (QGP) produced in heavy ion collisions. This is the closest one can come to probing QGP via a scattering experiment and hence is the best available path toward learning how a strongly coupled liquid emerges from an asymptotically free gauge theory. The short-distance, particulate, structure of liquid QGP can be revealed in events in which a jet parton resolves, and scatters off, a parton from the droplet of QGP. The probability for picking up significant transverse momentum via a single scattering was calculated previously, but only in the limit of infinite parton energy which means zero angle scattering. Here, we provide a leading order perturbative QCD calculation of the Molière scattering probability for incident partons with finite energy, scattering at a large angle. We set up a thought experiment in which an incident parton with a finite energy scatters off a parton constituent within a “brick” of QGP, which we treat as if it were weakly coupled, as appropriate for scattering with large momentum transfer, and compute the probability for a parton to show up at a nonzero angle with some energy. We include all relevant channels, including those in which the parton that shows up at a large angle was kicked out of the medium as well as the Rutherford-like channel in which what is seen is the scattered incident parton. The results that we obtain will serve as inputs to future jet Monte Carlo calculations and can provide qualitative guidance for how to use future precise, high statistics, suitably differential measurements of jet modification in heavy ion collisions to find the scatterers within the QGP liquid.

Keywords

Quark-Gluon Plasma Phase Diagram of QCD 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    U. Heinz and R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions, Ann. Rev. Nucl. Part. Sci. 63 (2013) 123 [arXiv:1301.2826] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    P. Romatschke and U. Romatschke, Relativistic Fluid Dynamics In and Out of Equilibrium — Ten Years of Progress in Theory and Numerical Simulations of Nuclear Collisions, arXiv:1712.05815 [INSPIRE].
  3. [3]
    W. Busza, K. Rajagopal and W. van der Schee, Heavy Ion Collisions: The Big Picture and the Big Questions, Ann. Rev. Nucl. Part. Sci. 68 (2018) 339 [arXiv:1802.04801] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    Y. Akiba et al., The Hot QCD White Paper: Exploring the Phases of QCD at RHIC and the LHC, arXiv:1502.02730 [INSPIRE].
  5. [5]
    Reaching for the horizon: The 2015 long range plan for nuclear science, http://science.energy.gov/~/media/np/nsac/pdf/2015LRP/2015_LRPNS_091815.pdf (2015).
  6. [6]
    NuPECC Long Range Plan 2017 Perspectives in Nuclear Physics, http://www.esf.org/fileadmin/user_upload/esf/Nupecc-LRP2017.pdf (2017).
  7. [7]
    PHENIX collaboration, An Upgrade Proposal from the PHENIX Collaboration, arXiv:1501.06197 [INSPIRE].
  8. [8]
    H. Liu, K. Rajagopal and U.A. Wiedemann, Calculating the jet quenching parameter from AdS/CFT, Phys. Rev. Lett. 97 (2006) 182301 [hep-ph/0605178] [INSPIRE].
  9. [9]
    F. D’Eramo, H. Liu and K. Rajagopal, Transverse Momentum Broadening and the Jet Quenching Parameter, Redux, Phys. Rev. D 84 (2011) 065015 [arXiv:1006.1367] [INSPIRE].ADSGoogle Scholar
  10. [10]
    F. D’Eramo, M. Lekaveckas, H. Liu and K. Rajagopal, Momentum Broadening in Weakly Coupled quark-gluon Plasma (with a view to finding the quasiparticles within liquid quark-gluon plasma), JHEP 05 (2013) 031 [arXiv:1211.1922] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    G. Molière, Theorie der Streuung schneller geladener Teilchen. I. Einzelstreuung am abgeschirmten Coulomb-Feld, Z. Naturforsch. A 2 (1947) 133.Google Scholar
  12. [12]
    G. Molière, Theorie der Streuung schneller geladener Teilchen. II. Mehrfach-und Vielfachstreuung, Z. Naturforsch. A 3 (1948) 78.Google Scholar
  13. [13]
    G. Molière, Theorie der Streuung schneller geladener Teilchen. III. Die Vielfachstreuung von Bahnspuren unter Berücksichtigung der statistichen Kopplung, Z. Naturforsch. A 10 (1955) 177.Google Scholar
  14. [14]
    A. Kurkela and U.A. Wiedemann, Picturing perturbative parton cascades in QCD matter, Phys. Lett. B 740 (2015) 172 [arXiv:1407.0293] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    CMS collaboration, Studies of jet quenching using isolated-photon+jet correlations in PbPb and pp collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Lett. B 718 (2013) 773 [arXiv:1205.0206] [INSPIRE].
  16. [16]
    CMS collaboration, Study of jet quenching with isolated-photon+jet correlations in PbPb and pp collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV, Phys. Lett. B 785 (2018) 14 [arXiv:1711.09738] [INSPIRE].
  17. [17]
    ATLAS collaboration, Study of photon-jet momentum correlations in Pb+Pb and pp collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV with ATLAS, ATLAS-CONF-2016-110.
  18. [18]
    ALICE collaboration, Measurement of jet quenching with semi-inclusive hadron-jet distributions in central Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV, JHEP 09 (2015) 170 [arXiv:1506.03984] [INSPIRE].
  19. [19]
    STAR collaboration, Measurements of jet quenching with semi-inclusive hadron+jet distributions in Au+Au collisions at \( \sqrt{s_{NN}}=200 \) GeV, Phys. Rev. C 96 (2017) 024905 [arXiv:1702.01108] [INSPIRE].
  20. [20]
    CMS collaboration, Study of Jet Quenching with Z + jet Correlations in Pb-Pb and pp Collisions at \( {\sqrt{s}}_{NN}=5.02 \) TeV, Phys. Rev. Lett. 119 (2017) 082301 [arXiv:1702.01060] [INSPIRE].
  21. [21]
    ALICE collaboration, First measurement of jet mass in Pb-Pb and p-Pb collisions at the LHC, Phys. Lett. B 776 (2018) 249 [arXiv:1702.00804] [INSPIRE].
  22. [22]
    CMS collaboration, Measurement of the Splitting Function in pp and Pb-Pb Collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV, Phys. Rev. Lett. 120 (2018) 142302 [arXiv:1708.09429] [INSPIRE].
  23. [23]
    CMS collaboration, Measurement of the groomed jet mass in PbPb and pp collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV, JHEP 10 (2018) 161 [arXiv:1805.05145] [INSPIRE].
  24. [24]
    ALICE collaboration, New results on jets and heavy flavor in heavy-ion collisions with ALICE, in 5th Large Hadron Collider Physics Conference (LHCP 2017), Shanghai, China, May 15–20, 2017 (2017) [arXiv:1709.09654] [INSPIRE].
  25. [25]
    ALICE collaboration, Medium modification of the shape of small-radius jets in central Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV, JHEP 10 (2018) 139 [arXiv:1807.06854] [INSPIRE].
  26. [26]
    J. Casalderrey-Solana, D.C. Gulhan, J.G. Milhano, D. Pablos and K. Rajagopal, A Hybrid Strong/Weak Coupling Approach to Jet Quenching, JHEP 10 (2014) 019 [Erratum ibid. 09 (2015) 175] [arXiv:1405.3864] [INSPIRE].
  27. [27]
    J. Casalderrey-Solana, D.C. Gulhan, J.G. Milhano, D. Pablos and K. Rajagopal, Predictions for Boson-Jet Observables and Fragmentation Function Ratios from a Hybrid Strong/Weak Coupling Model for Jet Quenching, JHEP 03 (2016) 053 [arXiv:1508.00815] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J. Casalderrey-Solana, D. Gulhan, G. Milhano, D. Pablos and K. Rajagopal, Angular Structure of Jet Quenching Within a Hybrid Strong/Weak Coupling Model, JHEP 03 (2017) 135 [arXiv:1609.05842] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    Z. Hulcher, D. Pablos and K. Rajagopal, Resolution Effects in the Hybrid Strong/Weak Coupling Model, JHEP 03 (2018) 010 [arXiv:1707.05245] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    K. Zapp, J. Stachel and U.A. Wiedemann, A Local Monte Carlo implementation of the non-abelian Landau-Pomerantschuk-Migdal effect, Phys. Rev. Lett. 103 (2009) 152302 [arXiv:0812.3888] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    K. Zapp, G. Ingelman, J. Rathsman, J. Stachel and U.A. Wiedemann, A Monte Carlo Model for ‘Jet Quenching’, Eur. Phys. J. C 60 (2009) 617 [arXiv:0804.3568] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    K.C. Zapp, F. Krauss and U.A. Wiedemann, A perturbative framework for jet quenching, JHEP 03 (2013) 080 [arXiv:1212.1599] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    K.C. Zapp, JEWEL 2.0.0: directions for use, Eur. Phys. J. C 74 (2014) 2762 [arXiv:1311.0048] [INSPIRE].
  34. [34]
    K.C. Zapp, Geometrical aspects of jet quenching in JEWEL, Phys. Lett. B 735 (2014) 157 [arXiv:1312.5536] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    R. Kunnawalkam Elayavalli and K.C. Zapp, Medium response in JEWEL and its impact on jet shape observables in heavy ion collisions, JHEP 07 (2017) 141 [arXiv:1707.01539] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    B. Schenke, C. Gale and S. Jeon, MARTINI: An Event generator for relativistic heavy-ion collisions, Phys. Rev. C 80 (2009) 054913 [arXiv:0909.2037] [INSPIRE].ADSGoogle Scholar
  37. [37]
    X.-N. Wang and Y. Zhu, Medium Modification of γ-jets in High-energy Heavy-ion Collisions, Phys. Rev. Lett. 111 (2013) 062301 [arXiv:1302.5874] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    Y. He, T. Luo, X.-N. Wang and Y. Zhu, Linear Boltzmann Transport for Jet Propagation in the quark-gluon Plasma: Elastic Processes and Medium Recoil, Phys. Rev. C 91 (2015) 054908 [Erratum ibid. C 97 (2018) 019902] [arXiv:1503.03313] [INSPIRE].
  39. [39]
    JETSCAPE collaboration, Multistage Monte-Carlo simulation of jet modification in a static medium, Phys. Rev. C 96 (2017) 024909 [arXiv:1705.00050] [INSPIRE].
  40. [40]
    JET collaboration, Extracting the jet transport coefficient from jet quenching in high-energy heavy-ion collisions, Phys. Rev. C 90 (2014) 014909 [arXiv:1312.5003] [INSPIRE].
  41. [41]
    STAR collaboration, Jet-Hadron Correlations in \( \sqrt{s_{NN}}=200 \) GeV p + p and Central Au + Au Collisions, Phys. Rev. Lett. 112 (2014) 122301 [arXiv:1302.6184] [INSPIRE].
  42. [42]
    CMS collaboration, Modification of jet shapes in PbPb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Lett. B 730 (2014) 243 [arXiv:1310.0878] [INSPIRE].
  43. [43]
    CMS collaboration, Measurement of transverse momentum relative to dijet systems in PbPb and pp collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV, JHEP 01 (2016) 006 [arXiv:1509.09029] [INSPIRE].
  44. [44]
    CMS collaboration, Correlations between jets and charged particles in PbPb and pp collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV, JHEP 02 (2016) 156 [arXiv:1601.00079] [INSPIRE].
  45. [45]
    CMS collaboration, Jet properties in PbPb and pp collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV, JHEP 05 (2018) 006 [arXiv:1803.00042] [INSPIRE].
  46. [46]
    L. Chen, G.-Y. Qin, S.-Y. Wei, B.-W. Xiao and H.-Z. Zhang, Probing Transverse Momentum Broadening via Dihadron and Hadron-jet Angular Correlations in Relativistic Heavy-ion Collisions, Phys. Lett. B 773 (2017) 672 [arXiv:1607.01932] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A.H. Mueller, B. Wu, B.-W. Xiao and F. Yuan, Probing Transverse Momentum Broadening in Heavy Ion Collisions, Phys. Lett. B 763 (2016) 208 [arXiv:1604.04250] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A.H. Mueller, B. Wu, B.-W. Xiao and F. Yuan, Medium Induced Transverse Momentum Broadening in Hard Processes, Phys. Rev. D 95 (2017) 034007 [arXiv:1608.07339] [INSPIRE].ADSGoogle Scholar
  49. [49]
    G. Milhano, U.A. Wiedemann and K.C. Zapp, Sensitivity of jet substructure to jet-induced medium response, Phys. Lett. B 779 (2018) 409 [arXiv:1707.04142] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    T. Luo, S. Cao, Y. He and X.-N. Wang, Multiple jets and γ-jet correlation in high-energy heavy-ion collisions, Phys. Lett. B 782 (2018) 707 [arXiv:1803.06785] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    Y. Tachibana and T. Hirano, Momentum transport away from a jet in an expanding nuclear medium, Phys. Rev. C 90 (2014) 021902 [arXiv:1402.6469] [INSPIRE].ADSGoogle Scholar
  52. [52]
    S. Floerchinger and K.C. Zapp, Hydrodynamics and Jets in Dialogue, Eur. Phys. J. C 74 (2014) 3189 [arXiv:1407.1782] [INSPIRE].CrossRefGoogle Scholar
  53. [53]
    Y. Tachibana and T. Hirano, Interplay between Mach cone and radial expansion and its signal in γ-jet events, Phys. Rev. C 93 (2016) 054907 [arXiv:1510.06966] [INSPIRE].ADSGoogle Scholar
  54. [54]
    S. Cao, T. Luo, G.-Y. Qin and X.-N. Wang, Linearized Boltzmann transport model for jet propagation in the quark-gluon plasma: Heavy quark evolution, Phys. Rev. C 94 (2016) 014909 [arXiv:1605.06447] [INSPIRE].ADSGoogle Scholar
  55. [55]
    Y. Tachibana, N.-B. Chang and G.-Y. Qin, Full jet in quark-gluon plasma with hydrodynamic medium response, Phys. Rev. C 95 (2017) 044909 [arXiv:1701.07951] [INSPIRE].ADSGoogle Scholar
  56. [56]
    J. Casalderrey-Solana, J.G. Milhano and U.A. Wiedemann, Jet Quenching via Jet Collimation, J. Phys. G 38 (2011) 035006 [arXiv:1012.0745] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    J.G. Milhano and K.C. Zapp, Origins of the di-jet asymmetry in heavy ion collisions, Eur. Phys. J. C 76 (2016) 288 [arXiv:1512.08107] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    P.M. Chesler and K. Rajagopal, On the Evolution of Jet Energy and Opening Angle in Strongly Coupled Plasma, JHEP 05 (2016) 098 [arXiv:1511.07567] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    K. Rajagopal, A.V. Sadofyev and W. van der Schee, Evolution of the jet opening angle distribution in holographic plasma, Phys. Rev. Lett. 116 (2016) 211603 [arXiv:1602.04187] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    J. Brewer, K. Rajagopal, A. Sadofyev and W. Van Der Schee, Evolution of the Mean Jet Shape and Dijet Asymmetry Distribution of an Ensemble of Holographic Jets in Strongly Coupled Plasma, JHEP 02 (2018) 015 [arXiv:1710.03237] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    P.B. Arnold and C. Dogan, QCD Splitting/Joining Functions at Finite Temperature in the Deep LPM Regime, Phys. Rev. D 78 (2008) 065008 [arXiv:0804.3359] [INSPIRE].ADSGoogle Scholar
  62. [62]
    P.B. Arnold, G.D. Moore and L.G. Yaffe, Effective kinetic theory for high temperature gauge theories, JHEP 01 (2003) 030 [hep-ph/0209353] [INSPIRE].
  63. [63]
    G.D. Moore, Transport coefficients in large N(f) gauge theory: Testing hard thermal loops, JHEP 05 (2001) 039 [hep-ph/0104121] [INSPIRE].
  64. [64]
    P.B. Arnold, G.D. Moore and L.G. Yaffe, Transport coefficients in high temperature gauge theories. 2. Beyond leading log, JHEP 05 (2003) 051 [hep-ph/0302165] [INSPIRE].
  65. [65]
    G.D. Moore and D. Teaney, How much do heavy quarks thermalize in a heavy ion collision?, Phys. Rev. C 71 (2005) 064904 [hep-ph/0412346] [INSPIRE].
  66. [66]
    P. Aurenche, F. Gelis and H. Zaraket, A Simple sum rule for the thermal gluon spectral function and applications, JHEP 05 (2002) 043 [hep-ph/0204146] [INSPIRE].
  67. [67]
    R.J. Fries, B. Müller and D.K. Srivastava, High-energy photons from passage of jets through quark gluon plasma, Phys. Rev. Lett. 90 (2003) 132301 [nucl-th/0208001] [INSPIRE].
  68. [68]
    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  69. [69]
    G. Baym, H. Monien, C.J. Pethick and D.G. Ravenhall, Transverse Interactions and Transport in Relativistic quark-gluon and Electromagnetic Plasmas, Phys. Rev. Lett. 64 (1990) 1867 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Francesco D’Eramo
    • 1
    • 2
  • Krishna Rajagopal
    • 3
  • Yi Yin
    • 3
    Email author
  1. 1.Dipartimento di Fisica e AstronomiaUniversità di PadovaPadovaItaly
  2. 2.INFN, Sezione di PadovaPadovaItaly
  3. 3.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations