Advertisement

Journal of High Energy Physics

, 2019:170 | Cite as

Quantum information processing and composite quantum fields

  • Sanjaye RamgoolamEmail author
  • Michal Sedlák
Open Access
Regular Article - Theoretical Physics
  • 20 Downloads

Abstract

Some beautiful identities involving hook contents of Young diagrams have been found in the field of quantum information processing, along with a combinatorial proof. We here give a representation theoretic proof of these identities and a number of generalizations. Our proof is based on trace identities for elements belonging to a class of permutation centralizer algebras. These algebras have been found to underlie the combinatorics of composite gauge invariant operators in quantum field theory, with applications in the AdS/CFT correspondence. Based on these algebras, we discuss some analogies between quantum information processing tasks and the combinatorics of composite quantum fields and argue that this can be fruitful interface between quantum information and quantum field theory, with implications for AdS/CFT.

Keywords

1/N Expansion AdS-CFT Correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Sedlák, A. Bisio and M. Ziman, Optimal probabilistic storage and retrieval of unitary channels, arXiv:1809.04552.
  2. [2]
    M. Sedlák and A. Bisio, On some new hook content identities, arXiv:1809.02008.
  3. [3]
    W. Fulton and J. Harris, Representation Theory: a first course, Springer (2004).Google Scholar
  4. [4]
    P. Mattioli and S. Ramgoolam, Permutation Centralizer Algebras and Multi-Matrix Invariants, Phys. Rev. D 93 (2016) 065040 [arXiv:1601.06086] [INSPIRE].ADSGoogle Scholar
  5. [5]
    Y. Kimura, Noncommutative Frobenius algebras and open-closed duality, arXiv:1701.08382 [INSPIRE].
  6. [6]
    Y. Kimura and S. Ramgoolam, Branes, anti-branes and brauer algebras in gauge-gravity duality, JHEP 11 (2007) 078 [arXiv:0709.2158] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    T.W. Brown, P.J. Heslop and S. Ramgoolam, Diagonal multi-matrix correlators and BPS operators in N = 4 SYM, JHEP 02 (2008) 030 [arXiv:0711.0176] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    R. Bhattacharyya, S. Collins and R. de Mello Koch, Exact Multi-Matrix Correlators, JHEP 03 (2008) 044 [arXiv:0801.2061] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    R. Bhattacharyya, R. de Mello Koch and M. Stephanou, Exact Multi-Restricted Schur Polynomial Correlators, JHEP 06 (2008) 101 [arXiv:0805.3025] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    T.W. Brown, P.J. Heslop and S. Ramgoolam, Diagonal free field matrix correlators, global symmetries and giant gravitons, JHEP 04 (2009) 089 [arXiv:0806.1911] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N = 4 SYM theory, Adv. Theor. Math. Phys. 5 (2002) 809 [hep-th/0111222] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    V. Balasubramanian, M.-x. Huang, T.S. Levi and A. Naqvi, Open strings from N = 4 superYang-Mills, JHEP 08 (2002) 037 [hep-th/0204196] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  13. [13]
    V. Balasubramanian, D. Berenstein, B. Feng and M.-x. Huang, D-branes in Yang-Mills theory and emergent gauge symmetry, JHEP 03 (2005) 006 [hep-th/0411205] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    S. Ramgoolam, Permutations and the combinatorics of gauge invariants for general N, PoS(CORFU2015)107 (2016) [arXiv:1605.00843] [INSPIRE].
  15. [15]
    Y. Kimura and S. Ramgoolam, Enhanced symmetries of gauge theory and resolving the spectrum of local operators, Phys. Rev. D 78 (2008) 126003 [arXiv:0807.3696] [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    M. Lasalle, An explicit formula for characters of the symmetric group, arXiv:0707.2732.
  17. [17]
    M. Hayashi, A Group Theoretic Approach to Quantum Information, Springer (2017).Google Scholar
  18. [18]
    G. Chiribella, G.M. D’Ariano and P. Perinotti, Quantum Circuit Architecture, Phys. Rev. Lett. 101 (2008) 060401.ADSCrossRefGoogle Scholar
  19. [19]
    G. Gutoski and J. Watrous, Toward a general theory of quantum games, in Proceeding of the 39th Annual ACM Symposium on Theory of Computation, San Diego, California, U.S.A., June 11–13, 2007, pp. 565 [DOI: https://doi.org/10.1145/1250790.1250873].
  20. [20]
    G. Chiribella, G.M. D’Ariano and P. Perinotti, Theoretical framework for quantum networks, Phys. Rev. A 80 (2009) 022339.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    A. Bisio, G. Chiribella, G.M. D’Ariano and P. Perinotti, Quantum Networks: general theory and applications, Acta Phys. Slov. 61 (2011) 273 [arXiv:1601.04864].ADSGoogle Scholar
  22. [22]
    D. Bacon, I. Chuang and A. Harrow, Efficient Quantum Circuits for Schur and Clebsch-Gordan Transforms, Phys. Rev. Lett. 97 (2006) 170502 [quant-ph/0407082].
  23. [23]
    N. Beisert, The complete one loop dilatation operator of N = 4 superYang-Mills theory, Nucl. Phys. B 676 (2004) 3 [hep-th/0307015] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    R. de Mello Koch, M. Dessein, D. Giataganas and C. Mathwin, Giant Graviton Oscillators, JHEP 10 (2011) 009 [arXiv:1108.2761] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    R. de Mello Koch and S. Ramgoolam, A double coset ansatz for integrability in AdS/CFT, JHEP 06 (2012) 083 [arXiv:1204.2153] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    V. Balasubramanian, B. Czech, K. Larjo and J. Simon, Integrability versus information loss: A Simple example, JHEP 11 (2006) 001 [hep-th/0602263] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J. Simon, Correlations vs connectivity in R-charge, JHEP 10 (2018) 048 [arXiv:1805.11279] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    D. Berenstein and A. Miller, Superposition induced topology changes in quantum gravity, JHEP 11 (2017) 121 [arXiv:1702.03011] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [arXiv:1005.3035] [INSPIRE].
  31. [31]
    T. Faulkner, M. Guica, T. Hartman, R.C. Myers and M. Van Raamsdonk, Gravitation from Entanglement in Holographic CFTs, JHEP 03 (2014) 051 [arXiv:1312.7856] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013) 781 [arXiv:1306.0533] [INSPIRE].
  33. [33]
    M. Hamermesh, Group theory and its application to physical problems, Dover (1962).Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Centre for Research in String Theory, Department of PhysicsQueen Mary University of LondonLondonU.K.
  2. 2.National Institute for Theoretical Physics, School of Physics and Mandelstam Institute for Theoretical PhysicsUniversity of the WitwatersrandWitsSouth Africa
  3. 3.RCQI, Institute of PhysicsSlovak Academy of SciencesBratislavaSlovakia
  4. 4.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations