Advertisement

Journal of High Energy Physics

, 2019:167 | Cite as

The \( \mathcal{N} \) = 3 Weyl multiplet in four dimensions

  • Jesse van MuidenEmail author
  • Antoine Van Proeyen
Open Access
Regular Article - Theoretical Physics
  • 10 Downloads

Abstract

The main ingredient for local superconformal methods is the multiplet of gauge fields: the Weyl multiplet. We construct the transformations of this multiplet for \( \mathcal{N} \) = 3, D = 4. The construction is based on a supersymmetry truncation from the \( \mathcal{N} \) = 4 Weyl multiplet, on coupling with a current multiplet, and on the implementation of a soft algebra at the nonlinear level, extending \( \mathfrak{s}\mathfrak{u} \)(2, 2|3). This is the first step towards a superconformal calculus for \( \mathcal{N} \) = 3, D = 4.

Keywords

Extended Supersymmetry Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Kaku and P.K. Townsend, Poincaré supergravity as broken superconformal gravity, Phys. Lett. 76B (1978) 54 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    F. Ciceri and B. Sahoo, Towards the full N = 4 conformal supergravity action, JHEP 01 (2016) 059 [arXiv:1510.04999] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    D. Butter, F. Ciceri, B. de Wit and B. Sahoo, Construction of all N = 4 conformal supergravities, Phys. Rev. Lett. 118 (2017) 081602 [arXiv:1609.09083] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    L. Álvarez-Gaumé and D.Z. Freedman, Geometrical structure and ultraviolet finiteness in the supersymmetric σ-model, Commun. Math. Phys. 80 (1981) 443 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    J. Bagger, Supersymmetric sigma models, in Supersymmetry, K. Dietz et al. ed., NATO Advanced Study Institute, Series B, Plenum Press U.K. (1985).Google Scholar
  6. [6]
    O. Aharony and M. Evtikhiev, On four dimensional N = 3 superconformal theories, JHEP 04 (2016) 040 [arXiv:1512.03524] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  7. [7]
    I. García-Etxebarria and D. Regalado, \( \mathcal{N} \) = 3 four dimensional field theories, JHEP 03 (2016) 083 [arXiv:1512.06434] [INSPIRE].
  8. [8]
    T. Nishinaka and Y. Tachikawa, On 4d rank-one \( \mathcal{N} \) = 3 superconformal field theories, JHEP 09 (2016) 116 [arXiv:1602.01503] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    O. Aharony and Y. Tachikawa, S-folds and 4d N = 3 superconformal field theories, JHEP 06 (2016) 044 [arXiv:1602.08638] [INSPIRE].
  10. [10]
    Y. Imamura and S. Yokoyama, Superconformal index of \( \mathcal{N} \) = 3 orientifold theories, J. Phys. A 49 (2016) 435401 [arXiv:1603.00851] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  11. [11]
    P. Agarwal and A. Amariti, Notes on S-folds and \( \mathcal{N} \) = 3 theories, JHEP 09 (2016) 032 [arXiv:1607.00313] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    I. García-Etxebarria and D. Regalado, Exceptional \( \mathcal{N} \) = 3 theories, JHEP 12 (2017) 042 [arXiv:1611.05769] [INSPIRE].
  13. [13]
    M. Lemos, P. Liendo, C. Meneghelli and V. Mitev, Bootstrapping \( \mathcal{N} \) = 3 superconformal theories, JHEP 04 (2017) 032 [arXiv:1612.01536] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    S. Ferrara, M. Porrati and A. Zaffaroni, N = 6 supergravity on AdS 5 and the SU(2, 2/3) superconformal correspondence, Lett. Math. Phys. 47 (1999) 255 [hep-th/9810063] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    P.S. Howe, A superspace approach to extended conformal supergravity, Phys. Lett. B 100 (1981) 389.Google Scholar
  16. [16]
    V.O. Rivelles and J.G. Taylor, Off-shell extended supergravity and central charges, Phys. Lett. 104B (1981) 131 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    L. Brink, M. Gell-Mann, P. Ramond and J.H. Schwarz, Extended supergravity as geometry of superspace, Phys. Lett. 76B (1978) 417 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    A.S. Galperin, E.A. Ivanov and V.I. Ogievetsky, Superspaces for N = 3 Supersymmetry, Sov. J. Nucl. Phys. 46 (1987) 543 [Yad. Fiz. 46 (1987) 948] [INSPIRE].
  19. [19]
    L. Castellani et al., The complete N = 3 matter coupled supergravity, Nucl. Phys. B 268 (1986) 317 [INSPIRE].
  20. [20]
    S. Ferrara, P. Fré and L. Girardello, Spontaneously broken N = 3 supergravity, Nucl. Phys. B 274 (1986) 600 [INSPIRE].
  21. [21]
    P. Karndumri and K. Upathambhakul, Gaugings of four-dimensional N = 3 supergravity and AdS4/CFT3 holography, Phys. Rev. D 93 (2016) 125017 [arXiv:1602.02254] [INSPIRE].ADSGoogle Scholar
  22. [22]
    P. Karndumri, Supersymmetric Janus solutions in four-dimensional N = 3 gauged supergravity, Phys. Rev. D 93 (2016) 125012 [arXiv:1604.06007] [INSPIRE].ADSMathSciNetGoogle Scholar
  23. [23]
    W. Nahm, Supersymmetries and their representations, Nucl. Phys. B 135 (1978) 149 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    E. Bergshoeff, M. de Roo and B. de Wit, Conformal supergravity in ten-dimensions, Nucl. Phys. B 217 (1983) 489 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Salam and E. Sezgin, Supergravities in diverse dimensions. Volume 1, 2, North-Holland, The Netherlands (1989).Google Scholar
  26. [26]
    E. Bergshoeff, E. Sezgin and H. Nishino, Heterotic σ models and conformal supergravity in two-dimensions, Phys. Lett. B 166 (1986) 141 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    J. McCabe and B. Velikson, A classification of two-dimensional conformal supergravity theories with finite dimensional algebras, Phys. Rev. D 40 (1989) 400 [INSPIRE].ADSMathSciNetGoogle Scholar
  28. [28]
    P. van Nieuwenhuizen, D = 3 conformal supergravity and Chern-Simons terms, Phys. Rev. D 32 (1985) 872 [INSPIRE].
  29. [29]
    M. Roček and P. van Nieuwenhuizen, N ≥ 2 supersymmetric Chern-Simons terms as d = 3 extended conformal supergravity, Class. Quant. Grav. 3 (1986) 43 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    U. Lindström and M. Roček, Superconformal gravity in three-dimensions as a gauge theory, Phys. Rev. Lett. 62 (1989) 2905 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    D. Butter, S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Conformal supergravity in three dimensions: New off-shell formulation, JHEP 09 (2013) 072 [arXiv:1305.3132] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    D. Butter, S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Conformal supergravity in three dimensions: off-shell actions, JHEP 10 (2013) 073 [arXiv:1306.1205] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Properties of conformal supergravity, Phys. Rev. D 17 (1978) 3179 [INSPIRE].ADSMathSciNetGoogle Scholar
  34. [34]
    B. de Wit, J.W. van Holten and A. Van Proeyen, Transformation rules of N = 2 supergravity multiplets, Nucl. Phys. B 167 (1980) 186 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    E. Bergshoeff, M. de Roo and B. de Wit, Extended conformal supergravity, Nucl. Phys. B 182 (1981) 173 [INSPIRE].
  36. [36]
    B. de Wit and S. Ferrara, On higher order invariants in extended supergravity, Phys. Lett. 81B (1979) 317 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    T. Kugo and K. Ohashi, Supergravity tensor calculus in 5D from 6D, Prog. Theor. Phys. 104 (2000) 835 [hep-ph/0006231] [INSPIRE].
  38. [38]
    E. Bergshoeff et al., Weyl multiplets of N = 2 conformal supergravity in five-dimensions, JHEP 06 (2001) 051 [hep-th/0104113] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    E. Bergshoeff, E. Sezgin and A. Van Proeyen, Superconformal tensor calculus and matter couplings in six-dimensions, Nucl. Phys. B 264 (1986) 653 [Erratum ibid. B 598 (2001) 667] [INSPIRE].
  40. [40]
    E. Bergshoeff, E. Sezgin and A. Van Proeyen, (2, 0) tensor multiplets and conformal supergravity in D = 6, Class. Quant. Grav. 16 (1999) 3193 [hep-th/9904085] [INSPIRE].
  41. [41]
    E.S. Fradkin and A.A. Tseytlin, Conformal supergravity, Phys. Rept. 119 (1985) 233 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    P. van Nieuwenhuizen, Relations between Chern-Simons terms, anomalies and conformal supergravity, talk given at the Nuffield Workshop on Supersymmetry and its Applications, June 23–July 14, Cambridge, U.K. (1985).Google Scholar
  43. [43]
    S. Ferrara, An overview on broken supergravity models, in Quantum gravity 2 : a second Oxford symposium, C.J. Isham et al. eds., Oxford University Press, Oxford, U.K. (1981).Google Scholar
  44. [44]
    S. Ferrara, C.A. Savoy and B. Zumino, General massive multiplets in extended supersymmetry, Phys. Lett. 100B (1981) 393 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    V. Ogievetsky and E. Sokatchev, On vector superfield generated by supercurrent, Nucl. Phys. B 124 (1977) 309 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    P.S. Howe, K.S. Stelle and P.K. Townsend, Supercurrents, Nucl. Phys. B 192 (1981) 332 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    P.S. Howe and U. Lindström, Counterterms for extended supergravity, talk given at the Nuffield Workshop on Superspace and Supergravity, June 16–July 12, Cambridge, U.K. (1980).Google Scholar
  48. [48]
    E. Bergshoeff et al., Extended conformal supergravity and its applications, talk given at the Nuffield workshop on superspace and supergravity, June 16–July 12, Cambridge, U.K. (1980).Google Scholar
  49. [49]
    W. Siegel, On-shell O(N) supergravity in superspace, Nucl. Phys. B 177 (1981) 325 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    E.A. Bergshoeff, Conformal invariance in supergravity, Ph.D. thesis, Leiden University, Leiden, The Netherlands (1983).Google Scholar
  51. [51]
    L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills theories, Nucl. Phys. B 121 (1977) 77 [INSPIRE].
  52. [52]
    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge U.K. (2012).CrossRefzbMATHGoogle Scholar
  53. [53]
    S. Ferrara, M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Gauging the graded conformal group with unitary internal symmetries, Nucl. Phys. B 129 (1977) 125 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    K.A. Intriligator, Bonus symmetries of N = 4 superYang-Mills correlation functions via AdS duality, Nucl. Phys. B 551 (1999) 575 [hep-th/9811047] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  55. [55]
    E. Cremmer and B. Julia, The SO(8) supergravity, Nucl. Phys. B 159 (1979) 141 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    S. Hegde and B. Sahoo, Comment on “The N = 3 Weyl multiplet in four dimensions”, arXiv:1810.05089 [INSPIRE].
  57. [57]
    P.S. Howe, Supergravity in superspace, Nucl. Phys. B 199 (1982) 309 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    D. Butter, S. Hegde, I. Lodato and B. Sahoo, N = 2 dilaton Weyl multiplet in 4D supergravity, JHEP 03 (2018) 154 [arXiv:1712.05365] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    S. Ferrara, A. Kehagias and D. Lüst, Aspects of Weyl supergravity, JHEP 08 (2018) 197 [arXiv:1806.10016] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    I.A. Batalin and G.A. Vilkovisky, Quantization of gauge theories with linearly dependent generators, Phys. Rev. D 28 (1983) 2567 [Erratum ibid. D 30 (1984) 508] [INSPIRE].
  61. [61]
    M. Henneaux, Lectures on the antifield-BRST formalism for gauge theories, Nucl. Phys. Proc. Suppl. 18A (1990) 47 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    J. Gomis, J. Paris and S. Samuel, Antibracket, antifields and gauge theory quantization, Phys. Rept. 259 (1995) 1 [hep-th/9412228] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    S. Ferrara and D. Lüst, Spin-four \( \mathcal{N} \) = 7 W-supergravity: S-fold and double copy construction, JHEP 07 (2018) 114 [arXiv:1805.10022] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  64. [64]
    A. Amariti, L. Cassia and S. Penati, Surveying 4d SCFTs twisted on Riemann surfaces, JHEP 06 (2017) 056 [arXiv:1703.08201] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.KU Leuven, Institute for Theoretical PhysicsLeuvenBelgium

Personalised recommendations