Journal of High Energy Physics

, 2019:164 | Cite as

Low-scale leptogenesis with three heavy neutrinos

  • Asmaa Abada
  • Giorgio Arcadi
  • Valerie Domcke
  • Marco Drewes
  • Juraj Klaric
  • Michele LucenteEmail author
Open Access
Regular Article - Theoretical Physics


Leptogenesis induced by the oscillations of GeV-scale neutrinos provides a minimal and testable explanation of the baryon asymmetry of the Universe. In this work we extend previous studies invoking only two heavy neutrinos to the case of three heavy neutrinos. We find qualitatively new behaviour as a result of lepton number violating oscillations and decays, strong flavour effects in the washout and a resonant enhancement due to matter effects. An approximate global \( B-\overline{L} \) symmetry (representing the difference of baryon and a generalised lepton number) can protect the light neutrino masses from large radiative corrections, while simultaneously providing the ingredients for the resonant enhancement of the lepton asymmetry due to thermal contributions to the heavy neutrino dispersion relations. This mechanism is particularly efficient for large heavy neutrino mixing angles near the current experimental limits, a regime in which leptogenesis is not feasible in the minimal scenario with two heavy neutrinos. In this new parameter regime, low-scale leptogenesis is testable by the LHC and other existing experiments.


Cosmology of Theories beyond the SM Neutrino Physics Thermal Field Theory CP violation 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    M. Drewes, The Phenomenology of Right Handed Neutrinos, Int. J. Mod. Phys. E 22 (2013) 1330019 [arXiv:1303.6912] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    P. Minkowski, μeγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
  3. [3]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].Google Scholar
  4. [4]
    R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  5. [5]
    T. Yanagida, Horizontal Symmetry and Masses of Neutrinos, Prog. Theor. Phys. 64 (1980) 1103 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  7. [7]
    J. Schechter and J.W.F. Valle, Neutrino Decay and Spontaneous Violation of Lepton Number, Phys. Rev. D 25 (1982) 774 [INSPIRE].ADSGoogle Scholar
  8. [8]
    ATLAS collaboration, Inclusive search for same-sign dilepton signatures in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 10 (2011) 107 [arXiv:1108.0366] [INSPIRE].
  9. [9]
    ATLAS collaboration, Search for heavy Majorana neutrinos with the ATLAS detector in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 07 (2015) 162 [arXiv:1506.06020] [INSPIRE].
  10. [10]
    ATLAS collaboration, Search for long-lived particles in final states with displaced dimuon vertices in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 99 (2019) 012001 [arXiv:1808.03057] [INSPIRE].
  11. [11]
    CMS collaboration, Search for heavy Majorana neutrinos in μ ± μ ±+ jets events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 748 (2015) 144 [arXiv:1501.05566] [INSPIRE].
  12. [12]
    CMS collaboration, Search for heavy Majorana neutrinos in e ± e ±+ jets and e ± μ ±+ jets events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 04 (2016) 169 [arXiv:1603.02248] [INSPIRE].
  13. [13]
    CMS collaboration, Search for heavy neutral leptons in events with three charged leptons in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. Lett. 120 (2018) 221801 [arXiv:1802.02965] [INSPIRE].
  14. [14]
    LHCb collaboration, Search for Majorana neutrinos in B π + μ μ decays, Phys. Rev. Lett. 112 (2014) 131802 [arXiv:1401.5361] [INSPIRE].
  15. [15]
    LCHb collaboration, Majorana Neutrino Searches at the LHCb Experiment, Acta Phys. Polon. B 49 (2018) 1301 [INSPIRE].
  16. [16]
    J.C. Helo, M. Hirsch and S. Kovalenko, Heavy neutrino searches at the LHC with displaced vertices, Phys. Rev. D 89 (2014) 073005 [Erratum ibid. D 93 (2016) 099902] [arXiv:1312.2900] [INSPIRE].
  17. [17]
    E. Izaguirre and B. Shuve, Multilepton and Lepton Jet Probes of Sub-Weak-Scale Right-Handed Neutrinos, Phys. Rev. D 91 (2015) 093010 [arXiv:1504.02470] [INSPIRE].ADSGoogle Scholar
  18. [18]
    A.M. Gago, P. Hernández, J. Jones-Pérez, M. Losada and A. Moreno Briceño, Probing the Type I Seesaw Mechanism with Displaced Vertices at the LHC, Eur. Phys. J. C 75 (2015) 470 [arXiv:1505.05880] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    C.O. Dib and C.S. Kim, Discovering sterile Neutrinos ligther than M W at the LHC, Phys. Rev. D 92 (2015) 093009 [arXiv:1509.05981] [INSPIRE].ADSGoogle Scholar
  20. [20]
    C.O. Dib, C.S. Kim, K. Wang and J. Zhang, Distinguishing Dirac/Majorana Sterile Neutrinos at the LHC, Phys. Rev. D 94 (2016) 013005 [arXiv:1605.01123] [INSPIRE].ADSGoogle Scholar
  21. [21]
    G. Cottin, J.C. Helo and M. Hirsch, Displaced vertices as probes of sterile neutrino mixing at the LHC, Phys. Rev. D 98 (2018) 035012 [arXiv:1806.05191] [INSPIRE].ADSGoogle Scholar
  22. [22]
    A. Abada, N. Bernal, M. Losada and X. Marcano, Inclusive Displaced Vertex Searches for Heavy Neutral Leptons at the LHC, arXiv:1807.10024 [INSPIRE].
  23. [23]
    M. Drewes, A. Giammanco, J. Hajer, M. Lucente and O. Mattelaer, A Heavy Metal Path to New Physics, arXiv:1810.09400 [INSPIRE].
  24. [24]
    F. Kling and S. Trojanowski, Heavy Neutral Leptons at FASER, Phys. Rev. D 97 (2018) 095016 [arXiv:1801.08947] [INSPIRE].ADSGoogle Scholar
  25. [25]
    J.C. Helo, M. Hirsch and Z.S. Wang, Heavy neutral fermions at the high-luminosity LHC, JHEP 07 (2018) 056 [arXiv:1803.02212] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    D. Curtin et al., Long-Lived Particles at the Energy Frontier: The MATHUSLA Physics Case, arXiv:1806.07396 [INSPIRE].
  27. [27]
    FCC-ee study Team collaboration, Search for Heavy Right Handed Neutrinos at the FCC-ee, Nucl. Part. Phys. Proc. 273-275 (2016) 1883 [arXiv:1411.5230] [INSPIRE].
  28. [28]
    S. Antusch and O. Fischer, Testing sterile neutrino extensions of the Standard Model at future lepton colliders, JHEP 05 (2015) 053 [arXiv:1502.05915] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Abada, V. De Romeri, S. Monteil, J. Orloff and A.M. Teixeira, Indirect searches for sterile neutrinos at a high-luminosity Z-factory, JHEP 04 (2015) 051 [arXiv:1412.6322] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    T. Asaka and T. Tsuyuki, Seesaw mechanism at electron-electron colliders, Phys. Rev. D 92 (2015) 094012 [arXiv:1508.04937] [INSPIRE].ADSGoogle Scholar
  31. [31]
    SHiP collaboration, Search for New Physics in SHiP and at future colliders, 2015 JINST 10 C07007 [arXiv:1503.08624] [INSPIRE].
  32. [32]
    A. Abada, D. Bečirević, M. Lucente and O. Sumensari, Lepton flavor violating decays of vector quarkonia and of the Z boson, Phys. Rev. D 91 (2015) 113013 [arXiv:1503.04159] [INSPIRE].ADSGoogle Scholar
  33. [33]
    S. Antusch, E. Cazzato and O. Fischer, Displaced vertex searches for sterile neutrinos at future lepton colliders, JHEP 12 (2016) 007 [arXiv:1604.02420] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    S. Antusch, E. Cazzato and O. Fischer, Sterile neutrino searches at future e e + , pp and e p colliders, Int. J. Mod. Phys. A 32 (2017) 1750078 [arXiv:1612.02728] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A. Caputo, P. Hernández, M. Kekic, J. López-Pavón and J. Salvado, The seesaw path to leptonic CP-violation, Eur. Phys. J. C 77 (2017) 258 [arXiv:1611.05000] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S. Antusch et al., Probing Leptogenesis at Future Colliders, JHEP 09 (2018) 124 [arXiv:1710.03744] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. Abada, D. Bečirević, O. Sumensari, C. Weiland and R. Zukanovich Funchal, Sterile neutrinos facing kaon physics experiments, Phys. Rev. D 95 (2017) 075023 [arXiv:1612.04737] [INSPIRE].ADSGoogle Scholar
  38. [38]
    NA62 collaboration, Search for heavy neutral lepton production in K + decays, Phys. Lett. B 778 (2018) 137 [arXiv:1712.00297] [INSPIRE].
  39. [39]
    M. Drewes, J. Hajer, J. Klaric and G. Lanfranchi, NA62 sensitivity to heavy neutral leptons in the low scale seesaw model, JHEP 07 (2018) 105 [arXiv:1801.04207] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M. Lamoureux, Search for heavy neutrinos with the near detector nd280 of the t2k experiment, results presented at the Neutrino 2018 conference, Heidelberg Germany (2018).Google Scholar
  41. [41]
    S. Alekhin et al., A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case, Rept. Prog. Phys. 79 (2016) 124201 [arXiv:1504.04855] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    L. Canetti, M. Drewes and M. Shaposhnikov, Matter and Antimatter in the Universe, New J. Phys. 14 (2012) 095012 [arXiv:1204.4186] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    E.K. Akhmedov, V.A. Rubakov and A. Yu. Smirnov, Baryogenesis via neutrino oscillations, Phys. Rev. Lett. 81 (1998) 1359 [hep-ph/9803255] [INSPIRE].
  46. [46]
    T. Asaka and M. Shaposhnikov, The nuMSM, dark matter and baryon asymmetry of the universe, Phys. Lett. B 620 (2005) 17 [hep-ph/0505013] [INSPIRE].
  47. [47]
    L. Canetti, M. Drewes, T. Frossard and M. Shaposhnikov, Dark Matter, Baryogenesis and Neutrino Oscillations from Right Handed Neutrinos, Phys. Rev. D 87 (2013) 093006 [arXiv:1208.4607] [INSPIRE].ADSGoogle Scholar
  48. [48]
    E.J. Chun et al., Probing Leptogenesis, Int. J. Mod. Phys. A 33 (2018) 1842005 [arXiv:1711.02865] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    T. Asaka, S. Blanchet and M. Shaposhnikov, The nuMSM, dark matter and neutrino masses, Phys. Lett. B 631 (2005) 151 [hep-ph/0503065] [INSPIRE].
  50. [50]
    M. Drewes et al., A White Paper on keV Sterile Neutrino Dark Matter, JCAP 01 (2017) 025 [arXiv:1602.04816] [INSPIRE].Google Scholar
  51. [51]
    A. Boyarsky, M. Drewes, T. Lasserre, S. Mertens and O. Ruchayskiy, Sterile Neutrino Dark Matter, Prog. Part. Nucl. Phys. 104 (2019) 1 [arXiv:1807.07938] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Shaposhnikov, The nuMSM, leptonic asymmetries and properties of singlet fermions, JHEP 08 (2008) 008 [arXiv:0804.4542] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    A. Anisimov, W. Buchmüller, M. Drewes and S. Mendizabal, Leptogenesis from Quantum Interference in a Thermal Bath, Phys. Rev. Lett. 104 (2010) 121102 [arXiv:1001.3856] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    J.-S. Gagnon and M. Shaposhnikov, Baryon Asymmetry of the Universe without Boltzmann or Kadanoff-Baym equations, Phys. Rev. D 83 (2011) 065021 [arXiv:1012.1126] [INSPIRE].ADSGoogle Scholar
  55. [55]
    A. Anisimov, W. Buchmüller, M. Drewes and S. Mendizabal, Quantum Leptogenesis I, Annals Phys. 326 (2011) 1998 [Erratum ibid. 338 (2011) 376] [arXiv:1012.5821] [INSPIRE].
  56. [56]
    M. Garny, A. Kartavtsev and A. Hohenegger, Leptogenesis from first principles in the resonant regime, Annals Phys. 328 (2013) 26 [arXiv:1112.6428] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  57. [57]
    B. Garbrecht and M. Herranen, Effective Theory of Resonant Leptogenesis in the Closed-Time-Path Approach, Nucl. Phys. B 861 (2012) 17 [arXiv:1112.5954] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  58. [58]
    L. Canetti and M. Shaposhnikov, Baryon Asymmetry of the Universe in the NuMSM, JCAP 09 (2010) 001 [arXiv:1006.0133] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    L. Canetti, M. Drewes and M. Shaposhnikov, Sterile Neutrinos as the Origin of Dark and Baryonic Matter, Phys. Rev. Lett. 110 (2013) 061801 [arXiv:1204.3902] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    T. Asaka, S. Eijima and H. Ishida, Kinetic Equations for Baryogenesis via Sterile Neutrino Oscillation, JCAP 02 (2012) 021 [arXiv:1112.5565] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    J. Ghiglieri and M. Laine, GeV-scale hot sterile neutrino oscillations: a derivation of evolution equations, JHEP 05 (2017) 132 [arXiv:1703.06087] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    J. Ghiglieri and M. Laine, GeV-scale hot sterile neutrino oscillations: a numerical solution, JHEP 02 (2018) 078 [arXiv:1711.08469] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    A. Anisimov, D. Besak and D. Bödeker, Thermal production of relativistic Majorana neutrinos: Strong enhancement by multiple soft scattering, JCAP 03 (2011) 042 [arXiv:1012.3784] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    D. Besak and D. Bödeker, Thermal production of ultrarelativistic right-handed neutrinos: Complete leading-order results, JCAP 03 (2012) 029 [arXiv:1202.1288] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    B. Garbrecht, F. Glowna and M. Herranen, Right-Handed Neutrino Production at Finite Temperature: Radiative Corrections, Soft and Collinear Divergences, JHEP 04 (2013) 099 [arXiv:1302.0743] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    B. Garbrecht, F. Glowna and P. Schwaller, Scattering Rates For Leptogenesis: Damping of Lepton Flavour Coherence and Production of Singlet Neutrinos, Nucl. Phys. B 877 (2013) 1 [arXiv:1303.5498] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  67. [67]
    I. Ghisoiu and M. Laine, Right-handed neutrino production rate at T > 160 GeV, JCAP 12 (2014) 032 [arXiv:1411.1765] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    J. Ghiglieri and M. Laine, Neutrino dynamics below the electroweak crossover, JCAP 07 (2016) 015 [arXiv:1605.07720] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    J. Ghiglieri and M. Laine, Precision study of GeV-scale resonant leptogenesis, arXiv:1811.01971 [INSPIRE].
  70. [70]
    S. Eijima, M. Shaposhnikov and I. Timiryasov, Freeze-out of baryon number in low-scale leptogenesis, JCAP 11 (2017) 030 [arXiv:1709.07834] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    T. Hambye and D. Teresi, Higgs doublet decay as the origin of the baryon asymmetry, Phys. Rev. Lett. 117 (2016) 091801 [arXiv:1606.00017] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    S. Eijima and M. Shaposhnikov, Fermion number violating effects in low scale leptogenesis, Phys. Lett. B 771 (2017) 288 [arXiv:1703.06085] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    T. Asaka, S. Eijima, H. Ishida, K. Minogawa and T. Yoshii, Initial condition for baryogenesis via neutrino oscillation, Phys. Rev. D 96 (2017) 083010 [arXiv:1704.02692] [INSPIRE].ADSGoogle Scholar
  74. [74]
    P. Hernández, M. Kekic, J. López-Pavón, J. Racker and J. Salvado, Testable Baryogenesis in Seesaw Models, JHEP 08 (2016) 157 [arXiv:1606.06719] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    M. Drewes, B. Garbrecht, D. Gueter and J. Klaric, Leptogenesis from Oscillations of Heavy Neutrinos with Large Mixing Angles, JHEP 12 (2016) 150 [arXiv:1606.06690] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    T. Asaka, S. Eijima and H. Ishida, On neutrinoless double beta decay in the νMSM, Phys. Lett. B 762 (2016) 371 [arXiv:1606.06686] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    P. Hernández, M. Kekic, J. López-Pavón, J. Racker and N. Rius, Leptogenesis in GeV scale seesaw models, JHEP 10 (2015) 067 [arXiv:1508.03676] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    M. Drewes and S. Eijima, Neutrinoless double β decay and low scale leptogenesis, Phys. Lett. B 763 (2016) 72 [arXiv:1606.06221] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  79. [79]
    M. Drewes, B. Garbrecht, D. Gueter and J. Klaric, Testing the low scale seesaw and leptogenesis, JHEP 08 (2017) 018 [arXiv:1609.09069] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    S. Eijima, M. Shaposhnikov and I. Timiryasov, Parameter space of baryogenesis in the νMSM, arXiv:1808.10833 [INSPIRE].
  81. [81]
    A. Abada, G. Arcadi, V. Domcke and M. Lucente, Lepton number violation as a key to low-scale leptogenesis, JCAP 11 (2015) 041 [arXiv:1507.06215] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    A. Abada, G. Arcadi, V. Domcke and M. Lucente, Neutrino masses, leptogenesis and dark matter from small lepton number violation?, JCAP 12 (2017) 024 [arXiv:1709.00415] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    L. Canetti, M. Drewes and B. Garbrecht, Probing leptogenesis with GeV-scale sterile neutrinos at LHCb and Belle II, Phys. Rev. D 90 (2014) 125005 [arXiv:1404.7114] [INSPIRE].ADSGoogle Scholar
  84. [84]
    M. Drewes and B. Garbrecht, Combining experimental and cosmological constraints on heavy neutrinos, Nucl. Phys. B 921 (2017) 250 [arXiv:1502.00477] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  85. [85]
    M. Drewes and B. Garbrecht, Leptogenesis from a GeV Seesaw without Mass Degeneracy, JHEP 03 (2013) 096 [arXiv:1206.5537] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    V.V. Khoze and G. Ro, Leptogenesis and Neutrino Oscillations in the Classically Conformal Standard Model with the Higgs Portal, JHEP 10 (2013) 075 [arXiv:1307.3764] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    B. Shuve and I. Yavin, Baryogenesis through Neutrino Oscillations: A Unified Perspective, Phys. Rev. D 89 (2014) 075014 [arXiv:1401.2459] [INSPIRE].ADSGoogle Scholar
  88. [88]
    M. Shaposhnikov, A Possible symmetry of the nuMSM, Nucl. Phys. B 763 (2007) 49 [hep-ph/0605047] [INSPIRE].
  89. [89]
    J. Kersten and A. Yu. Smirnov, Right-Handed Neutrinos at CERN LHC and the Mechanism of Neutrino Mass Generation, Phys. Rev. D 76 (2007) 073005 [arXiv:0705.3221] [INSPIRE].ADSGoogle Scholar
  90. [90]
    A. Pilaftsis, Radiatively induced neutrino masses and large Higgs neutrino couplings in the standard model with Majorana fields, Z. Phys. C 55 (1992) 275 [hep-ph/9901206] [INSPIRE].
  91. [91]
    E. Fernandez-Martinez, J. Hernandez-Garcia, J. Lopez-Pavon and M. Lucente, Loop level constraints on Seesaw neutrino mixing, JHEP 10 (2015) 130 [arXiv:1508.03051] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    W. Grimus and L. Lavoura, One-loop corrections to the seesaw mechanism in the multi-Higgs-doublet standard model, Phys. Lett. B 546 (2002) 86 [hep-ph/0207229] [INSPIRE].
  93. [93]
    D. Aristizabal Sierra and C.E. Yaguna, On the importance of the 1-loop finite corrections to seesaw neutrino masses, JHEP 08 (2011) 013 [arXiv:1106.3587] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  94. [94]
    P.S.B. Dev and A. Pilaftsis, Minimal Radiative Neutrino Mass Mechanism for Inverse Seesaw Models, Phys. Rev. D 86 (2012) 113001 [arXiv:1209.4051] [INSPIRE].ADSGoogle Scholar
  95. [95]
    J. Lopez-Pavon, S. Pascoli and C.-f. Wong, Can heavy neutrinos dominate neutrinoless double beta decay?, Phys. Rev. D 87 (2013) 093007 [arXiv:1209.5342] [INSPIRE].ADSGoogle Scholar
  96. [96]
    J. Lopez-Pavon, E. Molinaro and S.T. Petcov, Radiative Corrections to Light Neutrino Masses in Low Scale Type I Seesaw Scenarios and Neutrinoless Double Beta Decay, JHEP 11 (2015) 030 [arXiv:1506.05296] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    A. Abada, V. De Romeri, M. Lucente, A.M. Teixeira and T. Toma, Effective Majorana mass matrix from tau and pseudoscalar meson lepton number violating decays, JHEP 02 (2018) 169 [arXiv:1712.03984] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    K. Moffat, S. Pascoli and C. Weiland, Equivalence between massless neutrinos and lepton number conservation in fermionic singlet extensions of the Standard Model, arXiv:1712.07611 [INSPIRE].
  99. [99]
    J.R. Ellis, G. Gelmini, C. Jarlskog, G.G. Ross and J.W.F. Valle, Phenomenology of Supersymmetry with Broken R-Parity, Phys. Lett. B 150 (1985) 142 [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    G.G. Ross and J.W.F. Valle, Supersymmetric Models Without R-Parity, Phys. Lett. B 151 (1985) 375 [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    J.C. Romao, M.A. Diaz, M. Hirsch, W. Porod and J.W.F. Valle, A Supersymmetric solution to the solar and atmospheric neutrino problems, Phys. Rev. D 61 (2000) 071703 [hep-ph/9907499] [INSPIRE].
  102. [102]
    A. Abada and M. Losada, Constraints on a general three generation neutrino mass matrix from neutrino data: Application to the MSSM with R-parity violation, Nucl. Phys. B 585 (2000) 45 [hep-ph/9908352] [INSPIRE].
  103. [103]
    M. Hirsch, M.A. Diaz, W. Porod, J.C. Romao and J.W.F. Valle, Neutrino masses and mixings from supersymmetry with bilinear R parity violation: A Theory for solar and atmospheric neutrino oscillations, Phys. Rev. D 62 (2000) 113008 [Erratum ibid. D 65 (2002) 119901] [hep-ph/0004115] [INSPIRE].
  104. [104]
    A. Abada, S. Davidson and M. Losada, Neutrino masses and mixings in the MSSM with soft bilinear R(p) violation, Phys. Rev. D 65 (2002) 075010 [hep-ph/0111332] [INSPIRE].
  105. [105]
    D. Wyler and L. Wolfenstein, Massless Neutrinos in Left-Right Symmetric Models, Nucl. Phys. B 218 (1983) 205 [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    R.N. Mohapatra, Mechanism for Understanding Small Neutrino Mass in Superstring Theories, Phys. Rev. Lett. 56 (1986) 561 [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    R.N. Mohapatra and J.W.F. Valle, Neutrino Mass and Baryon Number Nonconservation in Superstring Models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].ADSGoogle Scholar
  108. [108]
    J. Bernabeu, A. Santamaria, J. Vidal, A. Mendez and J.W.F. Valle, Lepton Flavor Nonconservation at High-Energies in a Superstring Inspired Standard Model, Phys. Lett. B 187 (1987) 303 [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    M.C. Gonzalez-Garcia and J.W.F. Valle, Fast Decaying Neutrinos and Observable Flavor Violation in a New Class of Majoron Models, Phys. Lett. B 216 (1989) 360 [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    F. Deppisch and J.W.F. Valle, Enhanced lepton flavor violation in the supersymmetric inverse seesaw model, Phys. Rev. D 72 (2005) 036001 [hep-ph/0406040] [INSPIRE].
  111. [111]
    A. Abada and M. Lucente, Looking for the minimal inverse seesaw realisation, Nucl. Phys. B 885 (2014) 651 [arXiv:1401.1507] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  112. [112]
    E.K. Akhmedov, M. Lindner, E. Schnapka and J.W.F. Valle, Left-right symmetry breaking in NJLS approach, Phys. Lett. B 368 (1996) 270 [hep-ph/9507275] [INSPIRE].
  113. [113]
    E.K. Akhmedov, M. Lindner, E. Schnapka and J.W.F. Valle, Dynamical left-right symmetry breaking, Phys. Rev. D 53 (1996) 2752 [hep-ph/9509255] [INSPIRE].
  114. [114]
    S.M. Barr, A Different seesaw formula for neutrino masses, Phys. Rev. Lett. 92 (2004) 101601 [hep-ph/0309152] [INSPIRE].
  115. [115]
    M. Malinsky, J.C. Romao and J.W.F. Valle, Novel supersymmetric SO(10) seesaw mechanism, Phys. Rev. Lett. 95 (2005) 161801 [hep-ph/0506296] [INSPIRE].
  116. [116]
    M.B. Gavela, T. Hambye, D. Hernandez and P. Hernández, Minimal Flavour Seesaw Models, JHEP 09 (2009) 038 [arXiv:0906.1461] [INSPIRE].ADSCrossRefGoogle Scholar
  117. [117]
    T. Appelquist and R. Shrock, Neutrino masses in theories with dynamical electroweak symmetry breaking, Phys. Lett. B 548 (2002) 204 [hep-ph/0204141] [INSPIRE].
  118. [118]
    T. Appelquist and R. Shrock, Dynamical symmetry breaking of extended gauge symmetries, Phys. Rev. Lett. 90 (2003) 201801 [hep-ph/0301108] [INSPIRE].
  119. [119]
    A. Ibarra, E. Molinaro and S.T. Petcov, TeV Scale See-Saw Mechanisms of Neutrino Mass Generation, the Majorana Nature of the Heavy Singlet Neutrinos and (ββ)0ν -Decay, JHEP 09 (2010) 108 [arXiv:1007.2378] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  120. [120]
    A. Ibarra, E. Molinaro and S.T. Petcov, Low Energy Signatures of the TeV Scale See-Saw Mechanism, Phys. Rev. D 84 (2011) 013005 [arXiv:1103.6217] [INSPIRE].ADSGoogle Scholar
  121. [121]
    D.N. Dinh, A. Ibarra, E. Molinaro and S.T. Petcov, The μe Conversion in Nuclei, μeγ, μ → 3e Decays and TeV Scale See-Saw Scenarios of Neutrino Mass Generation, JHEP 08 (2012) 125 [Erratum ibid. 1309 (2013) 023] [arXiv:1205.4671] [INSPIRE].
  122. [122]
    G. Sigl and G. Raffelt, General kinetic description of relativistic mixed neutrinos, Nucl. Phys. B 406 (1993) 423 [INSPIRE].ADSCrossRefGoogle Scholar
  123. [123]
    Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  124. [124]
    M. D’Onofrio, K. Rummukainen and A. Tranberg, Sphaleron Rate in the Minimal Standard Model, Phys. Rev. Lett. 113 (2014) 141602 [arXiv:1404.3565] [INSPIRE].ADSCrossRefGoogle Scholar
  125. [125]
    M. Laine and M. Shaposhnikov, Sterile neutrino dark matter as a consequence of nuMSM-induced lepton asymmetry, JCAP 06 (2008) 031 [arXiv:0804.4543] [INSPIRE].ADSCrossRefGoogle Scholar
  126. [126]
    V.V. Klimov, Spectrum of Elementary Fermi Excitations in Quark Gluon Plasma. (In Russian), Sov. J. Nucl. Phys. 33 (1981) 934 [INSPIRE].
  127. [127]
    V.V. Klimov, Collective Excitations in a Hot Quark Gluon Plasma, Sov. Phys. JETP 55 (1982) 199 [INSPIRE].Google Scholar
  128. [128]
    H.A. Weldon, Dynamical Holes in the quark-gluon Plasma, Phys. Rev. D 40 (1989) 2410 [INSPIRE].ADSGoogle Scholar
  129. [129]
    C. Quimbay and S. Vargas-Castrillon, Fermionic dispersion relations in the standard model at finite temperature, Nucl. Phys. B 451 (1995) 265 [hep-ph/9504410] [INSPIRE].
  130. [130]
    C.P. Kiessig, M. Plümacher and M.H. Thoma, Decay of a Yukawa fermion at finite temperature and applications to leptogenesis, Phys. Rev. D 82 (2010) 036007 [arXiv:1003.3016] [INSPIRE].ADSGoogle Scholar
  131. [131]
    O. Ruchayskiy and A. Ivashko, Experimental bounds on sterile neutrino mixing angles, JHEP 06 (2012) 100 [arXiv:1112.3319] [INSPIRE].ADSCrossRefGoogle Scholar
  132. [132]
    T. Asaka, S. Eijima and H. Ishida, Mixing of Active and Sterile Neutrinos, JHEP 04 (2011) 011 [arXiv:1101.1382] [INSPIRE].ADSCrossRefGoogle Scholar
  133. [133]
    D. Gorbunov and A. Panin, On the minimal active-sterile neutrino mixing in seesaw type-I mechanism with sterile neutrinos at GeV scale, Phys. Rev. D 89 (2014) 017302 [arXiv:1312.2887] [INSPIRE].ADSGoogle Scholar
  134. [134]
    X.-D. Shi and G.M. Fuller, A New dark matter candidate: Nonthermal sterile neutrinos, Phys. Rev. Lett. 82 (1999) 2832 [astro-ph/9810076] [INSPIRE].
  135. [135]
    T. Hambye and D. Teresi, Baryogenesis from L-violating Higgs-doublet decay in the density-matrix formalism, Phys. Rev. D 96 (2017) 015031 [arXiv:1705.00016] [INSPIRE].ADSGoogle Scholar
  136. [136]
    J.A. Casas and A. Ibarra, Oscillating neutrinos and μe, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].
  137. [137]
    F. Capozzi, E. Lisi, A. Marrone and A. Palazzo, Current unknowns in the three neutrino framework, Prog. Part. Nucl. Phys. 102 (2018) 48 [arXiv:1804.09678] [INSPIRE].ADSCrossRefGoogle Scholar
  138. [138]
    P.F. De Salas, S. Gariazzo, O. Mena, C.A. Ternes and M. Tórtola, Neutrino Mass Ordering from Oscillations and Beyond: 2018 Status and Future Prospects, Front. Astron. Space Sci. 5 (2018) 36 [arXiv:1806.11051] [INSPIRE].ADSCrossRefGoogle Scholar
  139. [139]
    Super-Kamiokande collaboration, Atmospheric neutrino oscillation analysis with external constraints in Super-Kamiokande I-IV, Phys. Rev. D 97 (2018) 072001 [arXiv:1710.09126] [INSPIRE].
  140. [140]
    T2K collaboration, Latest results from T2K, in 53rd Rencontres de Moriond on Electroweak Interactions and Unified Theories (Moriond EW 2018), La Thuile Italy (2018) [arXiv:1805.05917] [INSPIRE].
  141. [141]
    NOvA collaboration, New constraints on oscillation parameters from ν e appearance and ν μ disappearance in the NOvA experiment, Phys. Rev. D 98 (2018) 032012 [arXiv:1806.00096] [INSPIRE].
  142. [142]
    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].ADSCrossRefGoogle Scholar
  143. [143]
    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
  144. [144]
    KamLAND-Zen collaboration, Results and future plans for the KamLAND-Zen experiment, J. Phys. Conf. Ser. 888 (2017) 012031 [INSPIRE].
  145. [145]
    F.L. Bezrukov, nu MSM-predictions for neutrinoless double beta decay, Phys. Rev. D 72 (2005) 071303 [hep-ph/0505247] [INSPIRE].
  146. [146]
    M. Blennow, E. Fernandez-Martinez, J. Lopez-Pavon and J. Menendez, Neutrinoless double beta decay in seesaw models, JHEP 07 (2010) 096 [arXiv:1005.3240] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  147. [147]
    A. Faessler, M. González, S. Kovalenko and F. Šimkovic, Arbitrary mass Majorana neutrinos in neutrinoless double beta decay, Phys. Rev. D 90 (2014) 096010 [arXiv:1408.6077] [INSPIRE].ADSGoogle Scholar
  148. [148]
    A. Babič, S. Kovalenko, M.I. Krivoruchenko and F. Šimkovic, Interpolating formula for the 0νββ-decay half-life in the case of light and heavy neutrino mass mechanisms, Phys. Rev. D 98 (2018) 015003 [arXiv:1804.04218] [INSPIRE].ADSGoogle Scholar
  149. [149]
    E. Fernandez-Martinez, J. Hernandez-Garcia and J. Lopez-Pavon, Global constraints on heavy neutrino mixing, JHEP 08 (2016) 033 [arXiv:1605.08774] [INSPIRE].ADSCrossRefGoogle Scholar
  150. [150]
    T. Yamazaki et al., Search for Heavy Neutrinos in Kaon Decay, Conf. Proc. C 840719 (1984) 262.Google Scholar
  151. [151]
    WA66 collaboration, Search for Heavy Neutrino Decays in the BEBC Beam Dump Experiment, Phys. Lett. B 160 (1985) 207 [INSPIRE].
  152. [152]
    CHARM collaboration, A Search for Decays of Heavy Neutrinos in the Mass Range 0.5-GeV to 2.8-GeV, Phys. Lett. 166B (1986) 473 [INSPIRE].
  153. [153]
    NA3 collaboration, Mass and Lifetime Limits on New Longlived Particles in 300-GeV/cπ Interactions, Z. Phys. C 31 (1986) 21 [INSPIRE].
  154. [154]
    G. Bernardi et al., Further limits on heavy neutrino couplings, Phys. Lett. B 203 (1988) 332 [INSPIRE].ADSCrossRefGoogle Scholar
  155. [155]
    OPAL collaboration, Limits on neutral heavy lepton production from Z0 decay, Phys. Lett. B 247 (1990) 448 [INSPIRE].
  156. [156]
    D.I. Britton et al., Improved search for massive neutrinos in π +e + ν decay, Phys. Rev. D 46 (1992) R885 [INSPIRE].ADSGoogle Scholar
  157. [157]
    L3 collaboration, Search for isosinglet neutral heavy leptons in Z0 decays, Phys. Lett. B 295 (1992) 371 [INSPIRE].
  158. [158]
    S.A. Baranov et al., Search for heavy neutrinos at the IHEP-JINR neutrino detector, Phys. Lett. B 302 (1993) 336 [INSPIRE].ADSCrossRefGoogle Scholar
  159. [159]
    L3 collaboration, Results from the L3 experiment at LEP, Phys. Rept. 236 (1993) 1 [INSPIRE].
  160. [160]
    DELPHI collaboration, Search for neutral heavy leptons produced in Z decays, Z. Phys. C 74 (1997) 57 [Erratum ibid. C 75 (1997) 580] [INSPIRE].
  161. [161]
    PIENU collaboration, Search for Massive Neutrinos in the Decay π, Phys. Rev. D 84 (2011) 052002 [arXiv:1106.4055] [INSPIRE].
  162. [162]
    Belle collaboration, Search for heavy neutrinos at Belle, Phys. Rev. D 87 (2013) 071102 [Erratum ibid. D 95 (2017) 099903] [arXiv:1301.1105] [INSPIRE].
  163. [163]
    R.S. Hayano et al., Heavy neutrino search using K(mu2) Decay, Phys. Rev. Lett. 49 (1982) 1305 [INSPIRE].ADSCrossRefGoogle Scholar
  164. [164]
    CHARM II collaboration, Search for heavy isosinglet neutrinos, Phys. Lett. B 343 (1995) 453 [INSPIRE].
  165. [165]
    FMMF collaboration, Search for neutral weakly interacting massive particles in the Fermilab Tevatron wide band neutrino beam, Phys. Rev. D 52 (1995) 6 [INSPIRE].
  166. [166]
    NuTeV and E815 collaborations, Search for neutral heavy leptons in a high-energy neutrino beam, Phys. Rev. Lett. 83 (1999) 4943 [hep-ex/9908011] [INSPIRE].
  167. [167]
    A. Kusenko, S. Pascoli and D. Semikoz, New bounds on MeV sterile neutrinos based on the accelerator and Super-Kamiokande results, JHEP 11 (2005) 028 [hep-ph/0405198] [INSPIRE].
  168. [168]
    E949 collaboration, Search for heavy neutrinos in K +μ + ν H decays, Phys. Rev. D 91 (2015) 052001 [Erratum ibid. D 91 (2015) 059903] [arXiv:1411.3963] [INSPIRE].
  169. [169]
    PIENU collaboration, Improved search for heavy neutrinos in the decay π, Phys. Rev. D 97 (2018) 072012 [arXiv:1712.03275] [INSPIRE].
  170. [170]
    NOMAD collaboration, Search for heavy neutrinos mixing with tau neutrinos, Phys. Lett. B 506 (2001) 27 [hep-ex/0101041] [INSPIRE].
  171. [171]
    J. Orloff, A.N. Rozanov and C. Santoni, Limits on the mixing of tau neutrino to heavy neutrinos, Phys. Lett. B 550 (2002) 8 [hep-ph/0208075] [INSPIRE].
  172. [172]
    O. Ruchayskiy and A. Ivashko, Restrictions on the lifetime of sterile neutrinos from primordial nucleosynthesis, JCAP 10 (2012) 014 [arXiv:1202.2841] [INSPIRE].ADSCrossRefGoogle Scholar
  173. [173]
    M.S. Chanowitz, M.A. Furman and I. Hinchliffe, Weak Interactions of Ultraheavy Fermions. 2., Nucl. Phys. B 153 (1979) 402 [INSPIRE].
  174. [174]
    L. Durand, J.M. Johnson and J.L. Lopez, Perturbative Unitarity Revisited: A New Upper Bound on the Higgs Boson Mass, Phys. Rev. Lett. 64 (1990) 1215 [INSPIRE].ADSCrossRefGoogle Scholar
  175. [175]
    J.G. Korner, A. Pilaftsis and K. Schilcher, Leptonic flavor changing Z0 decays in SU(2) × U(1) theories with right-handed neutrinos, Phys. Lett. B 300 (1993) 381 [hep-ph/9301290] [INSPIRE].
  176. [176]
    J. Bernabeu, J.G. Korner, A. Pilaftsis and K. Schilcher, Universality breaking effects in leptonic Z decays, Phys. Rev. Lett. 71 (1993) 2695 [hep-ph/9307295] [INSPIRE].
  177. [177]
    S. Fajfer and A. Ilakovac, Lepton flavor violation in light hadron decays, Phys. Rev. D 57 (1998) 4219 [INSPIRE].ADSGoogle Scholar
  178. [178]
    A. Ilakovac, Lepton flavor violation in the standard model extended by heavy singlet Dirac neutrinos, Phys. Rev. D 62 (2000) 036010 [hep-ph/9910213] [INSPIRE].
  179. [179]
    LHCb, BaBar, Belle collaboration, Recent results on searches for heavy Majorana neutrinos, Nucl. Part. Phys. Proc. 260 (2015) 143 [INSPIRE].
  180. [180]
    S. Antusch, E. Cazzato and O. Fischer, Sterile neutrino searches via displaced vertices at LHCb, Phys. Lett. B 774 (2017) 114 [arXiv:1706.05990] [INSPIRE].ADSCrossRefGoogle Scholar
  181. [181]
    G. Cottin, J.C. Helo and M. Hirsch, Searches for light sterile neutrinos with multitrack displaced vertices, Phys. Rev. D 97 (2018) 055025 [arXiv:1801.02734] [INSPIRE].ADSGoogle Scholar
  182. [182]
    T. Asaka, S. Eijima and A. Watanabe, Heavy neutrino search in accelerator-based experiments, JHEP 03 (2013) 125 [arXiv:1212.1062] [INSPIRE].ADSCrossRefGoogle Scholar
  183. [183]
    T. Asaka and H. Ishida, Lepton number violation by heavy Majorana neutrino in B decays, Phys. Lett. B 763 (2016) 393 [arXiv:1609.06113] [INSPIRE].ADSCrossRefGoogle Scholar
  184. [184]
    GERDA collaboration, Improved Limit on Neutrinoless Double-β Decay of 76 Ge from GERDA Phase II, Phys. Rev. Lett. 120 (2018) 132503 [arXiv:1803.11100] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique (UMR8627), CNRS, Univ. Paris-Sud, Université Paris-SaclayOrsayFrance
  2. 2.Max-Planck-Institut für Kernphysik (MPIK)HeidelbergGermany
  3. 3.Deutsches Elektronen-Synchrotron (DESY)HamburgGermany
  4. 4.Centre for Cosmology, Particle Physics and Phenomenology, Université catholique de LouvainLouvain-la-NeuveBelgium
  5. 5.Technische Universität München (TUM)GarchingGermany
  6. 6.Institute of Physics, Laboratory for Particle Physics and Cosmology (LPPC), Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations