Journal of High Energy Physics

, 2019:149 | Cite as

The wavefunction reconstruction effects in calculation of DM-induced electronic transition in semiconductor targets

  • Zheng-Liang LiangEmail author
  • Lin Zhang
  • Ping Zhang
  • Fawei Zheng
Open Access
Regular Article - Experimental Physics


The physics of the electronic excitation in semiconductors induced by sub-GeV dark matter (DM) have been extensively discussed in literature, under the framework of the standard plane wave (PW) and pseudopotential calculation scheme. In this paper, we investigate the implication of the all-electron (AE) reconstruction on estimation of the DM-induced electronic transition event rates. As a benchmark study, we first calculate the wavefunctions in silicon and germanium bulk crystals based on both the AE and pseudo (PS) schemes within the projector augmented wave (PAW) framework, and then make comparisons between the calculated excitation event rates obtained from these two approaches. It turns out that in process where large momentum transfer is kinetically allowed, the two calculated event rates can differ by a factor of a few. Such discrepancies are found to stem from the high-momentum components neglected in the PS scheme. It is thus implied that the correction from the AE wavefunction in the core region is necessary for an accurate estimate of the DM-induced transition event rate in semiconductors.


Dark matter Dark Matter and Double Beta Decay (experiments) 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    M.W. Goodman and E. Witten, Detectability of certain dark matter candidates, Phys. Rev. D 31 (1985) 3059 [INSPIRE].ADSGoogle Scholar
  2. [2]
    XENON100 collaboration, XENON100 dark matter results from a combination of 477 live days, Phys. Rev. D 94 (2016) 122001 [arXiv:1609.06154] [INSPIRE].
  3. [3]
    LUX collaboration, Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].
  4. [4]
    PandaX-II collaboration, Dark matter results from first 98.7 days of data from the PandaX-II experiment, Phys. Rev. Lett. 117 (2016) 121303 [arXiv:1607.07400] [INSPIRE].
  5. [5]
    EDELWEISS collaboration, Optimizing EDELWEISS detectors for low-mass WIMP searches, Phys. Rev. D 97 (2018) 022003 [arXiv:1707.04308] [INSPIRE].
  6. [6]
    SuperCDMS collaboration, Search for low-mass weakly interacting massive particles with SuperCDMS, Phys. Rev. Lett. 112 (2014) 241302 [arXiv:1402.7137] [INSPIRE].
  7. [7]
    R. Essig, J. Mardon and T. Volansky, Direct detection of sub-GeV dark matter, Phys. Rev. D 85 (2012) 076007 [arXiv:1108.5383] [INSPIRE].ADSGoogle Scholar
  8. [8]
    P.W. Graham, D.E. Kaplan, S. Rajendran and M.T. Walters, Semiconductor probes of light dark matter, Phys. Dark Univ. 1 (2012) 32 [arXiv:1203.2531] [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    R. Essig, M. Fernandez-Serra, J. Mardon, A. Soto, T. Volansky and T.-T. Yu, Direct detection of sub-GeV dark matter with semiconductor targets, JHEP 05 (2016) 046 [arXiv:1509.01598] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    S.K. Lee, M. Lisanti, S. Mishra-Sharma and B.R. Safdi, Modulation effects in dark matter-electron scattering experiments, Phys. Rev. D 92 (2015) 083517 [arXiv:1508.07361] [INSPIRE].ADSGoogle Scholar
  11. [11]
    P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136 (1964) B864 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965) A1133 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    P. Giannozzi et al., Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter 21 (2009) 395502 [arXiv:0906.2569].CrossRefGoogle Scholar
  14. [14]
    Y. Hochberg, T. Lin and K.M. Zurek, Detecting ultralight bosonic dark matter via absorption in superconductors, Phys. Rev. D 94 (2016) 015019 [arXiv:1604.06800] [INSPIRE].ADSGoogle Scholar
  15. [15]
    Y. Hochberg, Y. Kahn, M. Lisanti, C.G. Tully and K.M. Zurek, Directional detection of dark matter with two-dimensional targets, Phys. Lett. B 772 (2017) 239 [arXiv:1606.08849] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    Y. Hochberg, T. Lin and K.M. Zurek, Absorption of light dark matter in semiconductors, Phys. Rev. D 95 (2017) 023013 [arXiv:1608.01994] [INSPIRE].ADSGoogle Scholar
  17. [17]
    Y. Hochberg et al., Detection of sub-MeV dark matter with three-dimensional Dirac materials, Phys. Rev. D 97 (2018) 015004 [arXiv:1708.08929] [INSPIRE].ADSGoogle Scholar
  18. [18]
    G. Cavoto, F. Luchetta and A.D. Polosa, Sub-GeV dark matter detection with electron recoils in carbon nanotubes, Phys. Lett. B 776 (2018) 338 [arXiv:1706.02487] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. Knapen, T. Lin, M. Pyle and K.M. Zurek, Detection of light dark matter with optical phonons in polar materials, Phys. Lett. B 785 (2018) 386 [arXiv:1712.06598] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Knapen, T. Lin and K.M. Zurek, Light dark matter: models and constraints, Phys. Rev. D 96 (2017) 115021 [arXiv:1709.07882] [INSPIRE].ADSGoogle Scholar
  21. [21]
    S. Griffin, S. Knapen, T. Lin and K.M. Zurek, Directional detection of light dark matter with polar materials, Phys. Rev. D 98 (2018) 115034 [arXiv:1807.10291] [INSPIRE].Google Scholar
  22. [22]
    T. Liang, B. Zhu, R. Ding and T. Li, Direct detection of axion-like particles in bismuth-based topological insulators, Int. J. Mod. Phys. A 33 (2018) 1850135 [arXiv:1807.11757] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    B. Adolph, J. Furthmüller and F. Bechstedt, Optical properties of semiconductors using projector-augmented waves, Phys. Rev. B 63 (2001) 125108.ADSCrossRefGoogle Scholar
  24. [24]
    P. Delaney, B. Králik and S.G. Louie, Compton profiles of Si: pseudopotential calculation and reconstruction effects, Phys. Rev. B 58 (1998) 4320.ADSCrossRefGoogle Scholar
  25. [25]
    I. Makkonen, M. Hakala and M. Puska, Calculation of valence electron momentum densities using the projector augmented-wave method, J. Phys. Chem. Solids 66 (2005) 1128.ADSCrossRefGoogle Scholar
  26. [26]
    D.R. Hamann, M. Schlüter and C. Chiang, Norm-conserving pseudopotentials, Phys. Rev. Lett. 43 (1979) 1494.ADSCrossRefGoogle Scholar
  27. [27]
    D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B 41 (1990) 7892.ADSCrossRefGoogle Scholar
  28. [28]
    P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999) 1758.ADSCrossRefGoogle Scholar
  30. [30]
    N. Holzwarth, A. Tackett and G. Matthews, A Projector Augmented Wave (PAW) code for electronic structure calculations, part I: atompaw for generating atom-centered functions, Comput. Phys. Commun. 135 (2001) 329.Google Scholar
  31. [31]
    J.P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865.ADSCrossRefGoogle Scholar
  32. [32]
    X. Gonze et al., ABINIT: first-principles approach to material and nanosystem properties, Comput. Phys. Commun. 180 (2009) 2582.ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Zheng-Liang Liang
    • 1
    Email author
  • Lin Zhang
    • 2
    • 3
  • Ping Zhang
    • 1
  • Fawei Zheng
    • 1
  1. 1.Institute of Applied Physics and Computational MathematicsBeijingP.R. China
  2. 2.School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingP.R. China
  3. 3.CAS Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingP.R. China

Personalised recommendations