Journal of High Energy Physics

, 2019:147 | Cite as

e+e angularity distributions at NNLL′ accuracy

  • Guido Bell
  • Andrew Hornig
  • Christopher Lee
  • Jim TalbertEmail author
Open Access
Regular Article - Theoretical Physics


We present predictions for the e+e event shape angularities at NNLL′ resummed and \( \mathcal{O}\left({\alpha}_s^2\right) \) matched accuracy and compare them to LEP data at center-of-mass energies Q = 91.2 GeV and Q = 197 GeV. We perform the resummation within the framework of Soft-Collinear Effective Theory, and make use of recent results for the two-loop angularity soft function. We determine the remaining NNLL′ and \( \mathcal{O}\left({\alpha}_s^2\right) \) ingredients from a fit to the EVENT2 generator, and implement a shape function with a renormalon-free gap parameter to model non-perturbative effects. Using values of the strong coupling αs(mZ) and the universal non-perturbative shift parameter Ω1 that are consistent with those obtained in previous fits to the thrust and C-parameter distributions, we find excellent agreement between our predictions and the LEP data for all angularities with a ∈ [−1, 0.5]. This provides a robust test of the predictions of QCD, factorization, and the universal scaling of the non-perturbative shift across different angularities. Promisingly, our results indicate that current degeneracies in the {αs(mZ), Ω1} parameter space could be alleviated upon fitting these parameters to experimental data for the angularity distributions.


Resummation Perturbative QCD 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    M. Dasgupta and G.P. Salam, Event shapes in e + e annihilation and deep inelastic scattering, J. Phys. G 30 (2004) R143 [hep-ph/0312283] [INSPIRE].
  2. [2]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, NNLO corrections to event shapes in e + e annihilation, JHEP 12 (2007) 094 [arXiv:0711.4711] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S. Weinzierl, Event shapes and jet rates in electron-positron annihilation at NNLO, JHEP 06 (2009) 041 [arXiv:0904.1077] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, EERAD3: event shapes and jet rates in electron-positron annihilation at order α s3, Comput. Phys. Commun. 185 (2014) 3331 [arXiv:1402.4140] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    V. Del Duca et al., Jet production in the CoLoRFulNNLO method: event shapes in electron-positron collisions, Phys. Rev. D 94 (2016) 074019 [arXiv:1606.03453] [INSPIRE].ADSGoogle Scholar
  6. [6]
    S. Catani, L. Trentadue, G. Turnock and B.R. Webber, Resummation of large logarithms in e + e event shape distributions, Nucl. Phys. B 407 (1993) 3 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in BX s γ in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].
  8. [8]
    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
  9. [9]
    C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
  10. [10]
    M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [INSPIRE].
  11. [11]
    D. de Florian and M. Grazzini, The back-to-back region in e + e energy-energy correlation, Nucl. Phys. B 704 (2005) 387 [hep-ph/0407241] [INSPIRE].
  12. [12]
    T. Becher and G. Bell, NNLL resummation for jet broadening, JHEP 11 (2012) 126 [arXiv:1210.0580] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    A. Banfi, H. McAslan, P.F. Monni and G. Zanderighi, A general method for the resummation of event-shape distributions in e + e annihilation, JHEP 05 (2015) 102 [arXiv:1412.2126] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    T. Becher and M.D. Schwartz, A precise determination of α s from LEP thrust data using effective field theory, JHEP 07 (2008) 034 [arXiv:0803.0342] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    Y.-T. Chien and M.D. Schwartz, Resummation of heavy jet mass and comparison to LEP data, JHEP 08 (2010) 058 [arXiv:1005.1644] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    A.H. Hoang, D.W. Kolodrubetz, V. Mateu and I.W. Stewart, C-parameter distribution at N 3 LL’ including power corrections, Phys. Rev. D 91 (2015) 094017 [arXiv:1411.6633] [INSPIRE].ADSGoogle Scholar
  17. [17]
    R.A. Davison and B.R. Webber, Non-perturbative contribution to the thrust distribution in e + e annihilation, Eur. Phys. J. C 59 (2009) 13 [arXiv:0809.3326] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Thrust at N 3 LL with power corrections and a precision global fit for α s(m Z), Phys. Rev. D 83 (2011) 074021 [arXiv:1006.3080] [INSPIRE].ADSGoogle Scholar
  19. [19]
    R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Precision thrust cumulant moments at N 3 LL, Phys. Rev. D 86 (2012) 094002 [arXiv:1204.5746] [INSPIRE].ADSGoogle Scholar
  20. [20]
    T. Gehrmann, G. Luisoni and P.F. Monni, Power corrections in the dispersive model for a determination of the strong coupling constant from the thrust distribution, Eur. Phys. J. C 73 (2013) 2265 [arXiv:1210.6945] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A.H. Hoang, D.W. Kolodrubetz, V. Mateu and I.W. Stewart, Precise determination of α s from the C-parameter distribution, Phys. Rev. D 91 (2015) 094018 [arXiv:1501.04111] [INSPIRE].ADSGoogle Scholar
  22. [22]
    C. Lee and G.F. Sterman, Universality of nonperturbative effects in event shapes, eConf C 0601121 (2006) A001 [hep-ph/0603066] [INSPIRE].
  23. [23]
    C. Lee and G.F. Sterman, Momentum flow correlations from event shapes: factorized soft gluons and soft-collinear effective theory, Phys. Rev. D 75 (2007) 014022 [hep-ph/0611061] [INSPIRE].
  24. [24]
    T. Becher and G. Bell, Enhanced nonperturbative effects through the collinear anomaly, Phys. Rev. Lett. 112 (2014) 182002 [arXiv:1312.5327] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    G.P. Salam and D. Wicke, Hadron masses and power corrections to event shapes, JHEP 05 (2001) 061 [hep-ph/0102343] [INSPIRE].
  26. [26]
    V. Mateu, I.W. Stewart and J. Thaler, Power corrections to event shapes with mass-dependent operators, Phys. Rev. D 87 (2013) 014025 [arXiv:1209.3781] [INSPIRE].ADSGoogle Scholar
  27. [27]
    Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  28. [28]
    S. Bethke et al., Workshop on precision measurements of alphas, arXiv:1110.0016 [INSPIRE].
  29. [29]
    C.F. Berger, T. Kucs and G.F. Sterman, Event shape/energy flow correlations, Phys. Rev. D 68 (2003) 014012 [hep-ph/0303051] [INSPIRE].
  30. [30]
    Y.L. Dokshitzer, A. Lucenti, G. Marchesini and G.P. Salam, On the QCD analysis of jet broadening, JHEP 01 (1998) 011 [hep-ph/9801324] [INSPIRE].
  31. [31]
    A.J. Larkoski, D. Neill and J. Thaler, Jet shapes with the broadening axis, JHEP 04 (2014) 017 [arXiv:1401.2158] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    M. Procura, W.J. Waalewijn and L. Zeune, Joint resummation of two angularities at next-to-next-to-leading logarithmic order, JHEP 10 (2018) 098 [arXiv:1806.10622] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    C.W. Bauer, S.P. Fleming, C. Lee and G.F. Sterman, Factorization of e + e event shape distributions with hadronic final states in soft collinear effective theory, Phys. Rev. D 78 (2008) 034027 [arXiv:0801.4569] [INSPIRE].ADSGoogle Scholar
  34. [34]
    A. Hornig, C. Lee and G. Ovanesyan, Effective predictions of event shapes: factorized, resummed and gapped angularity distributions, JHEP 05 (2009) 122 [arXiv:0901.3780] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    L.G. Almeida, S.D. Ellis, C. Lee, G. Sterman, I. Sung and J.R. Walsh, Comparing and counting logs in direct and effective methods of QCD resummation, JHEP 04 (2014) 174 [arXiv:1401.4460] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    T. Becher, G. Bell and M. Neubert, Factorization and resummation for jet broadening, Phys. Lett. B 704 (2011) 276 [arXiv:1104.4108] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, A formalism for the systematic treatment of rapidity logarithms in quantum field theory, JHEP 05 (2012) 084 [arXiv:1202.0814] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    G.P. Korchemsky, Shape functions and power corrections to the event shapes, in QCD and high energy hadronic interactions. Proceedings, 33rd Rencontres de Moriond, Les Arcs, France, 21–28 March 1998, pg. 489 [hep-ph/9806537] [INSPIRE].
  39. [39]
    G.P. Korchemsky and G.F. Sterman, Power corrections to event shapes and factorization, Nucl. Phys. B 555 (1999) 335 [hep-ph/9902341] [INSPIRE].
  40. [40]
    C.F. Berger and G.F. Sterman, Scaling rule for nonperturbative radiation in a class of event shapes, JHEP 09 (2003) 058 [hep-ph/0307394] [INSPIRE].
  41. [41]
    C.F. Berger and L. Magnea, Scaling of power corrections for angularities from dressed gluon exponentiation, Phys. Rev. D 70 (2004) 094010 [hep-ph/0407024] [INSPIRE].
  42. [42]
    E. Gardi, Dressed gluon exponentiation, Nucl. Phys. B 622 (2002) 365 [hep-ph/0108222] [INSPIRE].
  43. [43]
    Y.L. Dokshitzer, G. Marchesini and B.R. Webber, Dispersive approach to power behaved contributions in QCD hard processes, Nucl. Phys. B 469 (1996) 93 [hep-ph/9512336] [INSPIRE].
  44. [44]
    Y.L. Dokshitzer and B.R. Webber, Calculation of power corrections to hadronic event shapes, Phys. Lett. B 352 (1995) 451 [hep-ph/9504219] [INSPIRE].
  45. [45]
    Y.L. Dokshitzer, A. Lucenti, G. Marchesini and G.P. Salam, On the universality of the Milan factor for 1/Q power corrections to jet shapes, JHEP 05 (1998) 003 [hep-ph/9802381] [INSPIRE].
  46. [46]
    G. Bell, R. Rahn and J. Talbert, Automated calculation of dijet soft functions in soft-collinear effective theory, PoS(RADCOR2015)052 (2016) [arXiv:1512.06100] [INSPIRE].
  47. [47]
    G. Bell, R. Rahn and J. Talbert, Two-loop anomalous dimensions of generic dijet soft functions, Nucl. Phys. B 936 (2018) 520 [arXiv:1805.12414] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    G. Bell, R. Rahn and J. Talbert, Generic dijet soft functions at two-loop order: correlated emissions, arXiv:1812.08690 [INSPIRE].
  49. [49]
    A. Banfi, B.K. El-Menoufi and P.F. Monni, The Sudakov radiator for jet observables and the soft physical coupling, arXiv:1807.11487 [INSPIRE].
  50. [50]
    G. Bell, A. Hornig, C. Lee and J. Talbert, Angularities from LEP to FCC-ee, in Proceedings, Parton Radiation and Fragmentation from LHC to FCC-ee, CERN, Geneva, Switzerland, 22–23 November 2016, pg. 90 [INSPIRE].
  51. [51]
    A.H. Hoang and I.W. Stewart, Designing gapped soft functions for jet production, Phys. Lett. B 660 (2008) 483 [arXiv:0709.3519] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    P. Achard et al., Generalized event shape and energy flow studies in e + e annihilation at \( \sqrt{s}=91.2 \) GeV–208.0 GeV, JHEP 10 (2011) 143 [INSPIRE].
  53. [53]
    C.F. Berger, Soft gluon exponentiation and resummation, Ph.D. thesis, SUNY, Stony Brook, NY, U.S.A. (2003) [hep-ph/0305076] [INSPIRE].
  54. [54]
    S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Top jets in the peak region: factorization analysis with NLL resummation, Phys. Rev. D 77 (2008) 114003 [arXiv:0711.2079] [INSPIRE].ADSGoogle Scholar
  55. [55]
    T. Becher, M. Neubert and B.D. Pecjak, Factorization and momentum-space resummation in deep-inelastic scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [INSPIRE].
  56. [56]
    T. Becher and M. Neubert, Threshold resummation in momentum space from effective field theory, Phys. Rev. Lett. 97 (2006) 082001 [hep-ph/0605050] [INSPIRE].
  57. [57]
    Z. Ligeti, I.W. Stewart and F.J. Tackmann, Treating the b quark distribution function with reliable uncertainties, Phys. Rev. D 78 (2008) 114014 [arXiv:0807.1926] [INSPIRE].ADSGoogle Scholar
  58. [58]
    A.V. Manohar, Deep inelastic scattering as x → 1 using soft collinear effective theory, Phys. Rev. D 68 (2003) 114019 [hep-ph/0309176] [INSPIRE].
  59. [59]
    C.W. Bauer, C. Lee, A.V. Manohar and M.B. Wise, Enhanced nonperturbative effects in Z decays to hadrons, Phys. Rev. D 70 (2004) 034014 [hep-ph/0309278] [INSPIRE].
  60. [60]
    A. Idilbi, X.-D. Ji and F. Yuan, Resummation of threshold logarithms in effective field theory for DIS, Drell-Yan and Higgs production, Nucl. Phys. B 753 (2006) 42 [hep-ph/0605068] [INSPIRE].
  61. [61]
    R.N. Lee, A.V. Smirnov and V.A. Smirnov, Analytic results for massless three-loop form factors, JHEP 04 (2010) 020 [arXiv:1001.2887] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    T. Gehrmann, T. Huber and D. Maître, Two-loop quark and gluon form-factors in dimensional regularisation, Phys. Lett. B 622 (2005) 295 [hep-ph/0507061] [INSPIRE].
  63. [63]
    T. Matsuura and W.L. van Neerven, Second order logarithmic corrections to the Drell-Yan cross-section, Z. Phys. C 38 (1988) 623 [INSPIRE].ADSGoogle Scholar
  64. [64]
    T. Matsuura, S.C. van der Marck and W.L. van Neerven, The calculation of the second order soft and virtual contributions to the Drell-Yan cross-section, Nucl. Phys. B 319 (1989) 570 [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    S. Moch, J.A.M. Vermaseren and A. Vogt, The quark form-factor at higher orders, JHEP 08 (2005) 049 [hep-ph/0507039] [INSPIRE].
  66. [66]
    R. Kelley, M.D. Schwartz, R.M. Schabinger and H.X. Zhu, The two-loop hemisphere soft function, Phys. Rev. D 84 (2011) 045022 [arXiv:1105.3676] [INSPIRE].ADSGoogle Scholar
  67. [67]
    P.F. Monni, T. Gehrmann and G. Luisoni, Two-loop soft corrections and resummation of the thrust distribution in the dijet region, JHEP 08 (2011) 010 [arXiv:1105.4560] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  68. [68]
    C.W. Bauer and A.V. Manohar, Shape function effects in BX s γ and \( B\to {X}_u\ell \overline{\nu} \) decays, Phys. Rev. D 70 (2004) 034024 [hep-ph/0312109] [INSPIRE].
  69. [69]
    T. Becher and M.D. Schwartz, Direct photon production with effective field theory, JHEP 02 (2010) 040 [arXiv:0911.0681] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  70. [70]
    T. Becher and M. Neubert, Toward a NNLO calculation of the \( \overline{B}\to {X}_s\gamma \) decay rate with a cut on photon energy. II. Two-loop result for the jet function, Phys. Lett. B 637 (2006) 251 [hep-ph/0603140] [INSPIRE].
  71. [71]
    T. Becher and G. Bell, The gluon jet function at two-loop order, Phys. Lett. B 695 (2011) 252 [arXiv:1008.1936] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    R. Brüser, Z.L. Liu and M. Stahlhofen, Three-loop quark jet function, Phys. Rev. Lett. 121 (2018) 072003 [arXiv:1804.09722] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    P. Banerjee, P.K. Dhani and V. Ravindran, Gluon jet function at three loops in QCD, Phys. Rev. D 98 (2018) 094016 [arXiv:1805.02637] [INSPIRE].ADSGoogle Scholar
  74. [74]
    S. Catani and M.H. Seymour, The dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett. B 378 (1996) 287 [hep-ph/9602277] [INSPIRE].
  75. [75]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  76. [76]
    A.H. Hoang and S. Kluth, Hemisphere soft function at O(α s2) for dijet production in e + e annihilation, arXiv:0806.3852 [INSPIRE].
  77. [77]
    K.G. Chetyrkin, A.L. Kataev and F.V. Tkachov, Higher order corrections to σ tot(e + e hadrons) in quantum chromodynamics, Phys. Lett. B 85 (1979) 277 [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    M. Dine and J.R. Sapirstein, Higher order QCD corrections in e + e annihilation, Phys. Rev. Lett. 43 (1979) 668 [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    W. Celmaster and R.J. Gonsalves, An analytic calculation of higher order quantum chromodynamic corrections in e + e annihilation, Phys. Rev. Lett. 44 (1980) 560 [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    Y.-T. Chien, A. Hornig and C. Lee, Soft-collinear mode for jet cross sections in soft collinear effective theory, Phys. Rev. D 93 (2016) 014033 [arXiv:1509.04287] [INSPIRE].ADSGoogle Scholar
  81. [81]
    D. Kang, C. Lee and I.W. Stewart, Using 1-jettiness to measure 2 jets in DIS 3 ways, Phys. Rev. D 88 (2013) 054004 [arXiv:1303.6952] [INSPIRE].ADSGoogle Scholar
  82. [82]
    G.P. Korchemsky and G.F. Sterman, Nonperturbative corrections in resummed cross-sections, Nucl. Phys. B 437 (1995) 415 [hep-ph/9411211] [INSPIRE].
  83. [83]
    M. Beneke and V.M. Braun, Heavy quark effective theory beyond perturbation theory: renormalons, the pole mass and the residual mass term, Nucl. Phys. B 426 (1994) 301 [hep-ph/9402364] [INSPIRE].
  84. [84]
    A. Jain, I. Scimemi and I.W. Stewart, Two-loop jet-function and jet-mass for top quarks, Phys. Rev. D 77 (2008) 094008 [arXiv:0801.0743] [INSPIRE].ADSGoogle Scholar
  85. [85]
    A.H. Hoang, A. Jain, I. Scimemi and I.W. Stewart, Infrared renormalization group flow for heavy quark masses, Phys. Rev. Lett. 101 (2008) 151602 [arXiv:0803.4214] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    V. Mateu, private communication.Google Scholar
  87. [87]
    D. Kang, C. Lee and I.W. Stewart, Analytic calculation of 1-jettiness in DIS at O(α s), JHEP 11 (2014) 132 [arXiv:1407.6706] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    A. Hornig, Y. Makris and T. Mehen, Jet shapes in dijet events at the LHC in SCET, JHEP 04 (2016) 097 [arXiv:1601.01319] [INSPIRE].ADSGoogle Scholar
  89. [89]
    S.M. Freedman, Subleading corrections to thrust using effective field theory, arXiv:1303.1558 [INSPIRE].
  90. [90]
    I. Moult, I.W. Stewart, G. Vita and H.X. Zhu, First subleading power resummation for event shapes, JHEP 08 (2018) 013 [arXiv:1804.04665] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  91. [91]
    D. Bertolini, M.P. Solon and J.R. Walsh, Integrated and differential accuracy in resummed cross sections, Phys. Rev. D 95 (2017) 054024 [arXiv:1701.07919] [INSPIRE].ADSGoogle Scholar
  92. [92]
    O.V. Tarasov, A.A. Vladimirov and A. Yu. Zharkov, The Gell-Mann-Low function of QCD in the three loop approximation, Phys. Lett. B 93 (1980) 429 [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    S.A. Larin and J.A.M. Vermaseren, The three loop QCD β-function and anomalous dimensions, Phys. Lett. B 303 (1993) 334 [hep-ph/9302208] [INSPIRE].
  94. [94]
    T. van Ritbergen, J.A.M. Vermaseren and S.A. Larin, The four loop β-function in quantum chromodynamics, Phys. Lett. B 400 (1997) 379 [hep-ph/9701390] [INSPIRE].
  95. [95]
    G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson loops beyond the leading order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    S. Moch, J.A.M. Vermaseren and A. Vogt, The three loop splitting functions in QCD: the nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Guido Bell
    • 1
  • Andrew Hornig
    • 2
  • Christopher Lee
    • 2
  • Jim Talbert
    • 3
    Email author
  1. 1.Theoretische Physik 1, Naturwissenschaftlich-Technische FakultätUniversität SiegenSiegenGermany
  2. 2.Theoretical Division, Group T-2, MS B283Los Alamos National LaboratoryLos AlamosU.S.A.
  3. 3.Theory GroupDeutsches Elektronen-Synchrotron (DESY)HamburgGermany

Personalised recommendations