Advertisement

Journal of High Energy Physics

, 2019:146 | Cite as

Multi-Regge kinematics and the scattering equations

  • Claude Duhr
  • Zhengwen LiuEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We study the solutions to the scattering equations in various quasi-multi-Regge regimes where the produced particles are ordered in rapidity. We observe that in all cases the solutions to the scattering equations admit the same hierarchy as the rapidity ordering, and we conjecture that this behaviour holds independently of the number of external particles. In multi-Regge limit, where the produced particles are strongly ordered in rapidity, we determine exactly all solutions to the scattering equations that contribute to the Cachazo-He-Yuan (CHY) formula for gluon scattering in this limit. When the CHY formula is localised on these solutions, it reproduces the expected factorisation of tree-level amplitudes in terms of impact factors and Lipatov vertices. We also investigate amplitudes in various quasi-MRK. While in these cases we cannot determine the solutions to the scattering equations exactly, we show that again our conjecture combined with the CHY formula implies the factorisation of the amplitude into universal buildings blocks for which we obtain a CHY-type representation.

Keywords

Scattering Amplitudes Perturbative QCD 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles in Arbitrary Dimensions, Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles: Scalars, Gluons and Gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    F. Cachazo, S. He and E.Y. Yuan, Scattering in Three Dimensions from Rational Maps, JHEP 10 (2013) 141 [arXiv:1306.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    F. Cachazo, S. He and E.Y. Yuan, Scattering equations and Kawai-Lewellen-Tye orthogonality, Phys. Rev. D 90 (2014) 065001 [arXiv:1306.6575] [INSPIRE].ADSGoogle Scholar
  5. [5]
    D.B. Fairlie and D.E. Roberts, Dual Models Without Tachyons — A New Approach, unpublished Durham preprint, PRINT-72-2440, (1972), [INSPIRE].
  6. [6]
    D.E. Roberts, Mathematical structure of dual amplitudes, Ph.D. Thesis, Durham University, U.K., (1972), [INSPIRE].
  7. [7]
    D.J. Gross and P.F. Mende, The High-Energy Behavior of String Scattering Amplitudes, Phys. Lett. B 197 (1987) 129 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    D.J. Gross and P.F. Mende, String Theory Beyond the Planck Scale, Nucl. Phys. B 303 (1988) 407 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    E. Witten, Parity invariance for strings in twistor space, Adv. Theor. Math. Phys. 8 (2004) 779 [hep-th/0403199] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    D.B. Fairlie, A Coding of Real Null Four-Momenta into World-Sheet Coordinates, Adv. Math. Phys. 2009 (2009) 284689 [arXiv:0805.2263] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    L. Dolan and P. Goddard, The Polynomial Form of the Scattering Equations, JHEP 07 (2014) 029 [arXiv:1402.7374] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    J.A. Farrow, A Monte Carlo Approach to the 4D Scattering Equations, JHEP 08 (2018) 085 [arXiv:1806.02732] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    Z. Liu and X. Zhao, Bootstrapping the Solutions of Scattering Equations, arXiv:1810.00384 [INSPIRE].
  14. [14]
    B.U.W. Schwab and A. Volovich, Subleading Soft Theorem in Arbitrary Dimensions from Scattering Equations, Phys. Rev. Lett. 113 (2014) 101601 [arXiv:1404.7749] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    N. Afkhami-Jeddi, Soft Graviton Theorem in Arbitrary Dimensions, arXiv:1405.3533 [INSPIRE].
  16. [16]
    C. Kalousios and F. Rojas, Next to subleading soft-graviton theorem in arbitrary dimensions, JHEP 01 (2015) 107 [arXiv:1407.5982] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Zlotnikov, Sub-sub-leading soft-graviton theorem in arbitrary dimension, JHEP 10 (2014) 148 [arXiv:1407.5936] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    F. Cachazo, S. He and E.Y. Yuan, New Double Soft Emission Theorems, Phys. Rev. D 92 (2015) 065030 [arXiv:1503.04816] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    M. Zlotnikov, Leading multi-soft limits from scattering equations, JHEP 10 (2017) 209 [arXiv:1708.05016] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    S. Chakrabarti, S.P. Kashyap, B. Sahoo, A. Sen and M. Verma, Testing Subleading Multiple Soft Graviton Theorem for CHY Prescription, JHEP 01 (2018) 090 [arXiv:1709.07883] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    D. Nandan, J. Plefka and W. Wormsbecher, Collinear limits beyond the leading order from the scattering equations, JHEP 02 (2017) 038 [arXiv:1608.04730] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Multi - Reggeon Processes in the Yang-Mills Theory, Sov. Phys. JETP 44 (1976) 443 [INSPIRE].ADSGoogle Scholar
  23. [23]
    L.N. Lipatov, Reggeization of the Vector Meson and the Vacuum Singularity in Nonabelian Gauge Theories, Sov. J. Nucl. Phys. 23 (1976) 338 [INSPIRE].Google Scholar
  24. [24]
    L.N. Lipatov, High-energy scattering in QCD and in quantum gravity and two-dimensional field theories, Nucl. Phys. B 365 (1991) 614 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    V.S. Fadin and L.N. Lipatov, High-Energy Production of Gluons in a QuasimultiRegge Kinematics, JETP Lett. 49 (1989) 352 [INSPIRE].ADSGoogle Scholar
  26. [26]
    V. Del Duca, Equivalence of the Parke-Taylor and the Fadin-Kuraev-Lipatov amplitudes in the high-energy limit, Phys. Rev. D 52 (1995) 1527 [hep-ph/9503340] [INSPIRE].
  27. [27]
    S. He, Z. Liu and J.-B. Wu, Scattering Equations, Twistor-string Formulas and Double-soft Limits in Four Dimensions, JHEP 07 (2016) 060 [arXiv:1604.02834] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    Y. Geyer, A.E. Lipstein and L.J. Mason, Ambitwistor Strings in Four Dimensions, Phys. Rev. Lett. 113 (2014) 081602 [arXiv:1404.6219] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    V. Del Duca, A. Frizzo and F. Maltoni, Factorization of tree QCD amplitudes in the high-energy limit and in the collinear limit, Nucl. Phys. B 568 (2000) 211 [hep-ph/9909464] [INSPIRE].
  30. [30]
    E.N. Antonov, L.N. Lipatov, E.A. Kuraev and I.O. Cherednikov, Feynman rules for effective Regge action, Nucl. Phys. B 721 (2005) 111 [hep-ph/0411185] [INSPIRE].
  31. [31]
    L.N. Lipatov, Gauge invariant effective action for high-energy processes in QCD, Nucl. Phys. B 452 (1995) 369 [hep-ph/9502308] [INSPIRE].
  32. [32]
    C. Duhr, New techniques in QCD, Ph.D. Thesis, Université catholique de Louvain, Belgium, (2009), [INSPIRE].
  33. [33]
    A. Prygarin, M. Spradlin, C. Vergu and A. Volovich, All Two-Loop MHV Amplitudes in Multi-Regge Kinematics From Applied Symbology, Phys. Rev. D 85 (2012) 085019 [arXiv:1112.6365] [INSPIRE].ADSGoogle Scholar
  34. [34]
    S. Weinzierl, On the solutions of the scattering equations, JHEP 04 (2014) 092 [arXiv:1402.2516] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    C. Kalousios, Massless scattering at special kinematics as Jacobi polynomials, J. Phys. A 47 (2014) 215402 [arXiv:1312.7743] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  36. [36]
    V. Del Duca, Real next-to-leading corrections to the multi-gluon amplitudes in the helicity formalism, Phys. Rev. D 54 (1996) 989 [hep-ph/9601211] [INSPIRE].
  37. [37]
    F.A. Berends and W.T. Giele, Multiple Soft Gluon Radiation in Parton Processes, Nucl. Phys. B 313 (1989) 595 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S. He and Y. Zhang, Connected formulas for amplitudes in standard model, JHEP 03 (2017) 093 [arXiv:1607.02843] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    V. Del Duca, Quark-anti-quark contribution to the multi-gluon amplitudes in the helicity formalism, Phys. Rev. D 54 (1996) 4474 [hep-ph/9604250] [INSPIRE].
  40. [40]
    L.N. Lipatov, Graviton Reggeization, Phys. Lett. 116B (1982) 411 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    Z. Liu, Gravitational Scattering in the High-Energy Limit, arXiv:1811.11710 [INSPIRE].
  42. [42]
    M. Spradlin and A. Volovich, From Twistor String Theory To Recursion Relations, Phys. Rev. D 80 (2009) 085022 [arXiv:0909.0229] [INSPIRE].ADSMathSciNetGoogle Scholar
  43. [43]
    T.K. Petersen, Eulerian Numbers, Springer, (2015).Google Scholar
  44. [44]
    S. Stieberger and T.R. Taylor, Subleading terms in the collinear limit of Yang-Mills amplitudes, Phys. Lett. B 750 (2015) 587 [arXiv:1508.01116] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Theoretical Physics Department, CERNGenevaSwitzerland
  2. 2.Center for Cosmology, Particle Physics and Phenomenology (CP3), UCLouvainLouvain-la-NeuveBelgium

Personalised recommendations