Journal of High Energy Physics

, 2019:145 | Cite as

Quantum corrections and the de Sitter swampland conjecture

  • Keshav DasguptaEmail author
  • Maxim Emelin
  • Evan McDonough
  • Radu Tatar
Open Access
Regular Article - Theoretical Physics


Recently a swampland criterion has been proposed that rules out de Sitter vacua in string theory. Such a criterion should hold at all points in the field space and especially at points where the system is on-shell. However there has not been any attempt to examine the swampland criterion against explicit equations of motion. In this paper we study four-dimensional de Sitter and quasi-de Sitter solutions using dimensionally reduced M-theory that includes quantum corrections. These quantum corrections are found to allow for de Sitter solutions provided certain constraints are satisfied. A careful study however shows that generically such a constrained system does not allow for an effective field theory description in four-dimensions. Nevertheless, if some hierarchies between the various quantum pieces could be found, certain solutions with an effective field theory description might exist. Such hierarchies appear once some mild time dependence is switched on, in which case certain quasi-de Sitter solutions may be found without a violation of the swampland criterion.


Flux compactifications M-Theory Superstring Vacua 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    G.W. Gibbons, Thoughts on tachyon cosmology, Class. Quant. Grav. 20 (2003) S321 [hep-th/0301117] [INSPIRE].
  2. [2]
    G.W. Gibbons, Aspects Of Supergravity Theories, Print-85-0061, Cambridge U.K. (1985).Google Scholar
  3. [3]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].
  4. [4]
    K. Dasgupta, R. Gwyn, E. McDonough, M. Mia and R. Tatar, de Sitter Vacua in Type IIB String Theory: Classical Solutions and Quantum Corrections, JHEP 07 (2014) 054 [arXiv:1402.5112] [INSPIRE].
  5. [5]
    D. Kutasov, T. Maxfield, I. Melnikov and S. Sethi, Constraining de Sitter Space in String Theory, Phys. Rev. Lett. 115 (2015) 071305 [arXiv:1504.00056] [INSPIRE].
  6. [6]
    S.R. Green, E.J. Martinec, C. Quigley and S. Sethi, Constraints on String Cosmology, Class. Quant. Grav. 29 (2012) 075006 [arXiv:1110.0545] [INSPIRE].
  7. [7]
    N. Cabo Bizet and S. Hirano, Revisiting constraints on uplifts to de Sitter vacua, arXiv:1607.01139 [INSPIRE].
  8. [8]
    S. Sethi, Supersymmetry Breaking by Fluxes, JHEP 10 (2018) 022 [arXiv:1709.03554] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  9. [9]
    U.H. Danielsson and T. Van Riet, What if string theory has no de Sitter vacua?, Int. J. Mod. Phys. D 27 (2018) 1830007 [arXiv:1804.01120] [INSPIRE].
  10. [10]
    E. Witten, Quantum gravity in de Sitter space, in Strings 2001: International Conference Mumbai, India, January 5-10, 2001, 2001, hep-th/0106109 [INSPIRE].
  11. [11]
    S.J. Gates, Jr., Is stringy supersymmetry quintessentially challenged?, in Supergravity at 25 Stony Brook, New York, December 1-2, 2001, 2002, hep-th/0202112 [INSPIRE].
  12. [12]
    G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, de Sitter Space and the Swampland, arXiv:1806.08362 [INSPIRE].
  13. [13]
    T.D. Brennan, F. Carta and C. Vafa, The String Landscape, the Swampland and the Missing Corner, PoS(TASI2017)015 [arXiv:1711.00864] [INSPIRE].
  14. [14]
    H. Ooguri and C. Vafa, On the Geometry of the String Landscape and the Swampland, Nucl. Phys. B 766 (2007) 21 [hep-th/0605264] [INSPIRE].
  15. [15]
    D. Andriot, New constraints on classical de Sitter: flirting with the swampland, arXiv:1807.09698 [INSPIRE].
  16. [16]
    D. Andriot, On the de Sitter swampland criterion, Phys. Lett. B 785 (2018) 570 [arXiv:1806.10999] [INSPIRE].
  17. [17]
    S.K. Garg and C. Krishnan, Bounds on Slow Roll and the de Sitter Swampland, arXiv:1807.05193 [INSPIRE].
  18. [18]
    J.-L. Lehners, Small-Field and Scale-Free: Inflation and Ekpyrosis at their Extremes, JCAP 11 (2018) 001 [arXiv:1807.05240] [INSPIRE].
  19. [19]
    A. Kehagias and A. Riotto, A note on Inflation and the Swampland, Fortsch. Phys. 66 (2018) 100052 [arXiv:1807.05445] [INSPIRE].
  20. [20]
    M. Dias, J. Frazer, A. Retolaza and A. Westphal, Primordial Gravitational Waves and the Swampland, arXiv:1807.06579 [INSPIRE].
  21. [21]
    F. Denef, A. Hebecker and T. Wrase, de Sitter swampland conjecture and the Higgs potential, Phys. Rev. D 98 (2018) 086004 [arXiv:1807.06581] [INSPIRE].
  22. [22]
    E. Ó. Colgáin, M.H. P.M. Van Putten and H. Yavartanoo, Observational consequences of H 0 tension in de Sitter Swampland, arXiv:1807.07451 [INSPIRE].
  23. [23]
    C. Roupec and T. Wrase, de Sitter extrema and the swampland, Fortsch. Phys. 2018 (2018) 1800082 [arXiv:1807.09538] [INSPIRE].
  24. [24]
    H. Matsui and F. Takahashi, Eternal Inflation and Swampland Conjectures, arXiv:1807.11938 [INSPIRE].
  25. [25]
    W.H. Kinney, S. Vagnozzi and L. Visinelli, The Zoo Plot Meets the Swampland: Mutual (In)Consistency of Single-Field Inflation, String Conjectures and Cosmological Data, arXiv:1808.06424 [INSPIRE].
  26. [26]
    A. Achúcarro and G.A. Palma, The string swampland constraints require multi-field inflation, arXiv:1807.04390 [INSPIRE].
  27. [27]
    L. Heisenberg, M. Bartelmann, R. Brandenberger and A. Refregier, Dark Energy in the Swampland, Phys. Rev. D 98 (2018) 123502 [arXiv:1808.02877] [INSPIRE].
  28. [28]
    P. Agrawal, G. Obied, P.J. Steinhardt and C. Vafa, On the Cosmological Implications of the String Swampland, Phys. Lett. B 784 (2018) 271 [arXiv:1806.09718] [INSPIRE].
  29. [29]
    H. Ooguri, E. Palti, G. Shiu and C. Vafa, Distance and de Sitter Conjectures on the Swampland, Phys. Lett. B 788 (2019) 180 [arXiv:1810.05506] [INSPIRE].
  30. [30]
    G. Dvali and C. Gomez, On Exclusion of Positive Cosmological Constant, arXiv:1806.10877 [INSPIRE].
  31. [31]
    S. Banerjee, U. Danielsson, G. Dibitetto, S. Giri and M. Schillo, Emergent de Sitter cosmology from decaying AdS, Phys. Rev. Lett. 121 (2018) 261301 [arXiv:1807.01570] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    L. Aalsma, M. Tournoy, J.P. Van Der Schaar and B. Vercnocke, Supersymmetric embedding of antibrane polarization, Phys. Rev. D 98 (2018) 086019 [arXiv:1807.03303] [INSPIRE].
  33. [33]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].
  34. [34]
    K. Dasgupta, P. Franche, A. Knauf and J. Sully, D-terms on the resolved conifold, JHEP 04 (2009) 027 [arXiv:0802.0202] [INSPIRE].
  35. [35]
    M. Berg, M. Haack and B. Körs, String loop corrections to Kähler potentials in orientifolds, JHEP 11 (2005) 030 [hep-th/0508043] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Berg, M. Haack and B. Körs, On volume stabilization by quantum corrections, Phys. Rev. Lett. 96 (2006) 021601 [hep-th/0508171] [INSPIRE].
  37. [37]
    T. Kobayashi, N. Omoto, H. Otsuka and T.H. Tatsuishi, Radiative Kähler moduli stabilization, Phys. Rev. D 97 (2018) 106006 [arXiv:1711.10274] [INSPIRE].
  38. [38]
    C.P. Burgess, A. Maharana and F. Quevedo, Uber-naturalness: unexpectedly light scalars from supersymmetric extra dimensions, JHEP 05 (2011) 010 [arXiv:1005.1199] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  39. [39]
    L. Aparicio, M. Cicoli, S. Krippendorf, A. Maharana, F. Muia and F. Quevedo, Sequestered de Sitter String Scenarios: Soft-terms, JHEP 11 (2014) 071 [arXiv:1409.1931] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    K. Becker, M. Becker, M. Haack and J. Louis, Supersymmetry breaking and alpha-prime corrections to flux induced potentials, JHEP 06 (2002) 060 [hep-th/0204254] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    F.G. Pedro, M. Rummel and A. Westphal, Extended No-Scale Structure and α ′2 Corrections to the Type IIB Action, arXiv:1306.1237 [INSPIRE].
  42. [42]
    T.W. Grimm, R. Savelli and M. Weissenbacher, On α corrections in N = 1 F-theory compactifications, Phys. Lett. B 725 (2013) 431 [arXiv:1303.3317] [INSPIRE].
  43. [43]
    E.-A. Kontou, J.J. Blanco-Pillado, M.P. Hertzberg and A. Masoumi, Effects on the CMB from Compactification Before Inflation, JCAP 04 (2017) 034 [arXiv:1701.01706] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    B. Elder, A. Joyce, J. Khoury and A.J. Tolley, Positive energy theorem for P (X, \( \phi \)) theories, Phys. Rev. D 91 (2015) 064002 [arXiv:1405.7696] [INSPIRE].
  45. [45]
    S. Tsujikawa, Dark energy: investigation and modeling, arXiv:1004.1493 [INSPIRE].
  46. [46]
    S. Deser and D. Seminara, Counterterms/M theory corrections to D = 11 supergravity, Phys. Rev. Lett. 82 (1999) 2435 [hep-th/9812136] [INSPIRE].
  47. [47]
    S. Deser and D. Seminara, Tree amplitudes and two loop counterterms in D = 11 supergravity, Phys. Rev. D 62 (2000) 084010 [hep-th/0002241] [INSPIRE].
  48. [48]
    S. Deser and D. Seminara, Graviton-form invariants in D = 11 supergravity, Phys. Rev. D 72 (2005) 027701 [hep-th/0506073] [INSPIRE].
  49. [49]
    D.J. Gross and E. Witten, Superstring Modifications of Einstein’s Equations, Nucl. Phys. B 277 (1986) 1 [INSPIRE].
  50. [50]
    D.J. Gross and J.H. Sloan, The Quartic Effective Action for the Heterotic String, Nucl. Phys. B 291 (1987) 41 [INSPIRE].
  51. [51]
    M.T. Grisaru and D. Zanon, σ Model Superstring Corrections to the Einstein-Hilbert Action, Phys. Lett. B 177 (1986) 347 [INSPIRE].
  52. [52]
    R.R. Metsaev and A.A. Tseytlin, Curvature Cubed Terms in String Theory Effective Actions, Phys. Lett. B 185 (1987) 52 [INSPIRE].
  53. [53]
    M.B. Green and P. Vanhove, Duality and higher derivative terms in M-theory, JHEP 01 (2006) 093 [hep-th/0510027] [INSPIRE].
  54. [54]
    J. McOrist and S. Sethi, M-theory and Type IIA Flux Compactifications, JHEP 12 (2012) 122 [arXiv:1208.0261] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    P. Chen, K. Dasgupta, K. Narayan, M. Shmakova and M. Zagermann, Brane inflation, solitons and cosmological solutions: 1., JHEP 09 (2005) 009 [hep-th/0501185] [INSPIRE].ADSMathSciNetGoogle Scholar
  56. [56]
    K. Dasgupta, G. Rajesh, D. Robbins and S. Sethi, Time dependent warping, fluxes and NCYM, JHEP 03 (2003) 041 [hep-th/0302049] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    T. Maxfield and S. Sethi, DBI from Gravity, JHEP 02 (2017) 108 [arXiv:1612.00427] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    M.B. Green, J.A. Harvey and G.W. Moore, I-brane inflow and anomalous couplings on D-branes, Class. Quant. Grav. 14 (1997) 47 [hep-th/9605033] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    K. Dasgupta, D.P. Jatkar and S. Mukhi, Gravitational couplings and Z(2) orientifolds, Nucl. Phys. B 523 (1998) 465 [hep-th/9707224] [INSPIRE].
  60. [60]
    K. Dasgupta and S. Mukhi, Anomaly inflow on orientifold planes, JHEP 03 (1998) 004 [hep-th/9709219] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    R. Donagi, Heterotic/F theory duality: ICMP lecture, in Mathematical physics. Proceedings of 12th International Congress, ICMP’97, Brisbane Australia (1997), pg. 206 [hep-th/9802093] [INSPIRE].
  62. [62]
    E. Bergshoeff, B. Janssen and T. Ortín, Solution generating transformations and the string effective action, Class. Quant. Grav. 13 (1996) 321 [hep-th/9506156] [INSPIRE].
  63. [63]
    K. Becker and M. Becker, M theory on eight manifolds, Nucl. Phys. B 477 (1996) 155 [hep-th/9605053] [INSPIRE].
  64. [64]
    S. Sethi, C. Vafa and E. Witten, Constraints on low dimensional string compactifications, Nucl. Phys. B 480 (1996) 213 [hep-th/9606122] [INSPIRE].
  65. [65]
    K. Dasgupta and S. Mukhi, A Note on low dimensional string compactifications, Phys. Lett. B 398 (1997) 285 [hep-th/9612188] [INSPIRE].
  66. [66]
    K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux, JHEP 08 (1999) 023 [hep-th/9908088] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  67. [67]
    M.R. Douglas and H. Ooguri, Why matrix theory is hard, Phys. Lett. B 425 (1998) 71 [hep-th/9710178] [INSPIRE].
  68. [68]
    G. Calcagni and L. Modesto, Nonlocal quantum gravity and M-theory, Phys. Rev. D 91 (2015) 124059 [arXiv:1404.2137] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Keshav Dasgupta
    • 1
    Email author
  • Maxim Emelin
    • 1
  • Evan McDonough
    • 2
  • Radu Tatar
    • 3
  1. 1.Department of PhysicsMcGill UniversityMontréalCanada
  2. 2.Department of PhysicsBrown UniversityProvidenceU.S.A.
  3. 3.Department of Mathematical SciencesUniversity of LiverpoolLiverpoolU.K.

Personalised recommendations