Journal of High Energy Physics

, 2019:144 | Cite as

Holographic description of boundary gravitons in (3+1) dimensions

  • Seth K. Asante
  • Bianca Dittrich
  • Hal M. HaggardEmail author
Open Access
Regular Article - Theoretical Physics


Gravity is uniquely situated in between classical topological field theories and standard local field theories. This can be seen in the quasi-local nature of gravitational observables, but is nowhere more apparent than in gravity’s holographic formulation. Holography holds promise for simplifying computations in quantum gravity. While holographic descriptions of three-dimensional spacetimes and of spacetimes with a negative cosmological constant are well-developed, a complete boundary description of zero curvature, four-dimensional spacetime is not currently available. Building on previous work in three-dimensions, we provide a new route to four-dimensional holography and its boundary gravitons. Using Regge calculus linearized around a flat Euclidean background with the topology of a solid hyper-torus, we obtain the effective action for a dual boundary theory, which describes the dynamics of the boundary gravitons. Remarkably, in the continuum limit and at large radii this boundary theory is local and closely analogous to the corresponding result in three-dimensions. The boundary effective action has a degenerate kinetic term that leads to singularities in the one-loop partition function that are independent of the discretization. These results establish a rich boundary dynamics for four-dimensional flat holography.


AdS-CFT Correspondence Lattice Models of Gravity Space-Time Symmetries Gauge Symmetry 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.-L. Gervais, B. Sakita and S. Wadia, The Surface Term in Gauge Theories, Phys. Lett. B 63 (1976) 55 [INSPIRE].
  2. [2]
    G. Barnich and F. Brandt, Covariant theory of asymptotic symmetries, conservation laws and central charges, Nucl. Phys. B 633 (2002) 3 [hep-th/0111246] [INSPIRE].
  3. [3]
    A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [INSPIRE].
  4. [4]
    W. Donnelly and L. Freidel, Local subsystems in gauge theory and gravity, JHEP 09 (2016) 102 [arXiv:1601.04744] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    M. Geiller, Lorentz-diffeomorphism edge modes in 3d gravity, JHEP 02 (2018) 029 [arXiv:1712.05269] [INSPIRE].
  6. [6]
    H. Gomes, F. Hopfmüller and A. Riello, A unified geometric framework for boundary charges and dressings: non-Abelian theory and matter, arXiv:1808.02074 [INSPIRE].
  7. [7]
    S. Carlip, The Statistical mechanics of the (2 + 1)-dimensional black hole, Phys. Rev. D 51 (1995) 632 [gr-qc/9409052] [INSPIRE].
  8. [8]
    A.P. Balachandran, L. Chandar and A. Momen, Edge states in gravity and black hole physics, Nucl. Phys. B 461 (1996) 581 [gr-qc/9412019] [INSPIRE].
  9. [9]
    S.W. Hawking, M.J. Perry and A. Strominger, Soft Hair on Black Holes, Phys. Rev. Lett. 116 (2016) 231301 [arXiv:1601.00921] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    S. Carlip, Black Hole Entropy from Bondi-Metzner-Sachs Symmetry at the Horizon, Phys. Rev. Lett. 120 (2018) 101301 [arXiv:1702.04439] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    G. Barnich, Black hole entropy from non-proper gauge degrees of freedom: II. The charged vacuum capacitor, arXiv:1806.00549 [INSPIRE].
  12. [12]
    S. Carlip, Dynamics of asymptotic diffeomorphisms in (2 + 1)-dimensional gravity, Class. Quant. Grav. 22 (2005) 3055 [gr-qc/0501033] [INSPIRE].
  13. [13]
    S. Giombi, A. Maloney and X. Yin, One-loop Partition Functions of 3D Gravity, JHEP 08 (2008) 007 [arXiv:0804.1773] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    G. Barnich, H.A. Gonzalez, A. Maloney and B. Oblak, One-loop partition function of three-dimensional flat gravity, JHEP 04 (2015) 178 [arXiv:1502.06185] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    V. Bonzom and B. Dittrich, 3D holography: from discretum to continuum, JHEP 03 (2016) 208 [arXiv:1511.05441] [INSPIRE].
  16. [16]
    B. Dittrich, C. Goeller, E. Livine and A. Riello, Quasi-local holographic dualities in non-perturbative 3d quantum gravity I — Convergence of multiple approaches and examples of Ponzano-Regge statistical duals, Nucl. Phys. B 938 (2019) 807 [arXiv:1710.04202] [INSPIRE].
  17. [17]
    B. Dittrich, C. Goeller, E.R. Livine and A. Riello, Quasi-local holographic dualities in non-perturbative 3d quantum gravity II — From coherent quantum boundaries to BM S 3 characters, Nucl. Phys. B 938 (2019) 878 [arXiv:1710.04237] [INSPIRE].
  18. [18]
    B. Dittrich, C. Goeller, E.R. Livine and A. Riello, Quasi-local holographic dualities in non-perturbative 3d quantum gravity, Class. Quant. Grav. 35 (2018) 13LT01 [arXiv:1803.02759] [INSPIRE].
  19. [19]
    A. Riello, Quantum edge modes in 3d gravity and 2 + 1d topological phases of matter, Phys. Rev. D 98 (2018) 106002 [arXiv:1802.02588] [INSPIRE].
  20. [20]
    S. Detournay, D. Grumiller, F. Schöller and J. Simón, Variational principle and one-point functions in three-dimensional flat space Einstein gravity, Phys. Rev. D 89 (2014) 084061 [arXiv:1402.3687] [INSPIRE].
  21. [21]
    G. Barnich and B. Oblak, Notes on the BMS group in three dimensions: I. Induced representations, JHEP 06 (2014) 129 [arXiv:1403.5803] [INSPIRE].
  22. [22]
    G. Barnich and B. Oblak, Notes on the BMS group in three dimensions: II. Coadjoint representation, JHEP 03 (2015) 033 [arXiv:1502.00010] [INSPIRE].
  23. [23]
    B. Oblak, Characters of the BMS Group in Three Dimensions, Commun. Math. Phys. 340 (2015) 413 [arXiv:1502.03108] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    A. Maloney and E. Witten, Quantum Gravity Partition Functions in Three Dimensions, JHEP 02 (2010) 029 [arXiv:0712.0155] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    J. Cotler and K. Jensen, A theory of reparameterizations for AdS 3 gravity, arXiv:1808.03263 [INSPIRE].
  26. [26]
    T. Regge, General relativity without coordinates, Nuovo Cim. 19 (1961) 558 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    G. Barnich, A. Gomberoff and H.A. González, Three-dimensional Bondi-Metzner-Sachs invariant two-dimensional field theories as the flat limit of Liouville theory, Phys. Rev. D 87 (2013) 124032 [arXiv:1210.0731] [INSPIRE].
  28. [28]
    S. Carlip, The dynamics of supertranslations and superrotations in 2 + 1 dimensions, Class. Quant. Grav. 35 (2018) 014001 [arXiv:1608.05088] [INSPIRE].
  29. [29]
    G. Ponzano and T. Regge, Semiclassical limit of racah coefficients, in Spectroscopy and group theoretical methods in physics, F. Block, ed., North Holland (1968).Google Scholar
  30. [30]
    B. Dittrich and S. Steinhaus, Path integral measure and triangulation independence in discrete gravity, Phys. Rev. D 85 (2012) 044032 [arXiv:1110.6866] [INSPIRE].
  31. [31]
    B. Dittrich, W. Kaminski and S. Steinhaus, Discretization independence implies non-locality in 4D discrete quantum gravity, Class. Quant. Grav. 31 (2014) 245009 [arXiv:1404.5288] [INSPIRE].
  32. [32]
    A. Baratin and L. Freidel, Hidden Quantum Gravity in 4-D Feynman diagrams: Emergence of spin foams, Class. Quant. Grav. 24 (2007) 2027 [hep-th/0611042] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    J.B. Hartle and R. Sorkin, Boundary Terms in the Action for the Regge Calculus, Gen. Rel. Grav. 13 (1981) 541 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    L. Schläfli, On the multiple integral ∫ n dxdy . . . dz whose limits are p = a 1 x+b 1 y+···+h 1 z>0, p 2 >0, …, p n >0, and x 2 +y 2 +···+z 2 <1, Quart. J. Pure Appl. Math. 2 (1858) 269.Google Scholar
  35. [35]
    A. Hedeman, H.M. Haggard, E. Kur and R.G. Littlejohn, Symplectic and semiclassical aspects of the Schläfli identity, J. Phys. A 48 (2015) 105203 [arXiv:1409.7117] [INSPIRE].
  36. [36]
    M. Roček and R.M. Williams, Quantum Regge Calculus, Phys. Lett. B 104 (1981) 31 [INSPIRE].
  37. [37]
    M. Roček and R.M. Williams, The Quantization of Regge Calculus, Z. Phys. C 21 (1984) 371 [INSPIRE].
  38. [38]
    B. Dittrich, Diffeomorphism symmetry in quantum gravity models, Adv. Sci. Lett. 2 (2008) 151 [arXiv:0810.3594] [INSPIRE].
  39. [39]
    B. Bahr and B. Dittrich, (Broken) Gauge Symmetries and Constraints in Regge Calculus, Class. Quant. Grav. 26 (2009) 225011 [arXiv:0905.1670] [INSPIRE].
  40. [40]
    B. Bahr and B. Dittrich, Breaking and restoring of diffeomorphism symmetry in discrete gravity, arXiv:0909.5688 [INSPIRE].
  41. [41]
    B. Bahr and B. Dittrich, Improved and Perfect Actions in Discrete Gravity, Phys. Rev. D 80 (2009) 124030 [arXiv:0907.4323] [INSPIRE].
  42. [42]
    B. Bahr and B. Dittrich, Regge calculus from a new angle, New J. Phys. 12 (2010) 033010 [arXiv:0907.4325] [INSPIRE].
  43. [43]
    H.M. Haggard, M. Han, W. Kaminski and A. Riello, SL(2, ℂ) Chern-Simons theory, a non-planar graph operator and 4D quantum gravity with a cosmological constant: Semiclassical geometry, Nucl. Phys. B 900 (2015) 1 [arXiv:1412.7546] [INSPIRE].
  44. [44]
    H.M. Haggard, M. Han and A. Riello, Encoding Curved Tetrahedra in Face Holonomies: Phase Space of Shapes from Group-Valued Moment Maps, Annales Henri Poincaré 17 (2016) 2001 [arXiv:1506.03053] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    H.M. Haggard, M. Han, W. Kaminski and A. Riello, Four-dimensional Quantum Gravity with a Cosmological Constant from Three-dimensional Holomorphic Blocks, Phys. Lett. B 752 (2016) 258 [arXiv:1509.00458] [INSPIRE].
  46. [46]
    S.K. Asante, B. Dittrich and H.M. Haggard, The Degrees of Freedom of Area Regge Calculus: Dynamics, Non-metricity and Broken Diffeomorphisms, Class. Quant. Grav. 35 (2018) 135009 [arXiv:1802.09551] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  47. [47]
    B. Dittrich and P.A. Hohn, From covariant to canonical formulations of discrete gravity, Class. Quant. Grav. 27 (2010) 155001 [arXiv:0912.1817] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    B. Dittrich and P.A. Hohn, Canonical simplicial gravity, Class. Quant. Grav. 29 (2012) 115009 [arXiv:1108.1974] [INSPIRE].
  49. [49]
    B. Dittrich and P.A. Hoehn, Constraint analysis for variational discrete systems, J. Math. Phys. 54 (2013) 093505 [arXiv:1303.4294] [INSPIRE].
  50. [50]
    B. Bahr, B. Dittrich and S. Steinhaus, Perfect discretization of reparametrization invariant path integrals, Phys. Rev. D 83 (2011) 105026 [arXiv:1101.4775] [INSPIRE].
  51. [51]
    B. Dittrich, How to construct diffeomorphism symmetry on the lattice, PoS(QGQGS2011)012 (2011) [arXiv:1201.3840] [INSPIRE].
  52. [52]
    A. Baratin and L. Freidel, Hidden Quantum Gravity in 3-D Feynman diagrams, Class. Quant. Grav. 24 (2007) 1993 [gr-qc/0604016] [INSPIRE].
  53. [53]
    G.W. Gibbons, S.W. Hawking and M.J. Perry, Path Integrals and the Indefiniteness of the Gravitational Action, Nucl. Phys. B 138 (1978) 141 [INSPIRE].
  54. [54]
    U. Pachner, P.L. Homeomorphic Manifolds are Equivalent by Elementary Shellings, Eur. J. Combinatorics 12 (1991) 129.Google Scholar
  55. [55]
    P. Menotti and P.P. Peirano, Diffeomorphism invariant measure for finite dimensional geometries, Nucl. Phys. B 488 (1997) 719 [hep-th/9607071] [INSPIRE].
  56. [56]
    H.W. Hamber and R.M. Williams, On the measure in simplicial gravity, Phys. Rev. D 59 (1999) 064014 [hep-th/9708019] [INSPIRE].
  57. [57]
    G. Barnich, A. Gomberoff and H.A. Gonzalez, The Flat limit of three dimensional asymptotically anti-de Sitter spacetimes, Phys. Rev. D 86 (2012) 024020 [arXiv:1204.3288] [INSPIRE].
  58. [58]
    H.W. Hamber and R.M. Williams, Simplicial quantum gravity in three-dimensions: Analytical and numerical results, Phys. Rev. D 47 (1993) 510 [INSPIRE].
  59. [59]
    B. Dittrich, L. Freidel and S. Speziale, Linearized dynamics from the 4-simplex Regge action, Phys. Rev. D 76 (2007) 104020 [arXiv:0707.4513] [INSPIRE].
  60. [60]
    B. Bahr, B. Dittrich and S. He, Coarse graining free theories with gauge symmetries: the linearized case, New J. Phys. 13 (2011) 045009 [arXiv:1011.3667] [INSPIRE].
  61. [61]
    A. Baratin and L. Freidel, A 2-categorical state sum model, J. Math. Phys. 56 (2015) 011705 [arXiv:1409.3526] [INSPIRE].
  62. [62]
    S. Asante and B. Dittrich, The one-loop partition function for 4D quantum flat space, to appear.Google Scholar
  63. [63]
    L. Smolin, Linking topological quantum field theory and nonperturbative quantum gravity, J. Math. Phys. 36 (1995) 6417 [gr-qc/9505028] [INSPIRE].
  64. [64]
    M. Bärenz and J. Barrett, Dichromatic state sum models for four-manifolds from pivotal functors, Commun. Math. Phys. 360 (2018) 663 [arXiv:1601.03580] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    B. Dittrich and M. Geiller, Quantum gravity kinematics from extended TQFTs, New J. Phys. 19 (2017) 013003 [arXiv:1604.05195] [INSPIRE].
  66. [66]
    B. Dittrich, (3 + 1)-dimensional topological phases and self-dual quantum geometries encoded on Heegaard surfaces, JHEP 05 (2017) 123 [arXiv:1701.02037] [INSPIRE].
  67. [67]
    A. Perez, The Spin Foam Approach to Quantum Gravity, Living Rev. Rel. 16 (2013) 3 [arXiv:1205.2019] [INSPIRE].
  68. [68]
    B. Dittrich and M. Geiller, A new vacuum for Loop Quantum Gravity, Class. Quant. Grav. 32 (2015) 112001 [arXiv:1401.6441] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  69. [69]
    B. Bahr, B. Dittrich and M. Geiller, A new realization of quantum geometry, arXiv:1506.08571 [INSPIRE].
  70. [70]
    B. Dittrich and S. Speziale, Area-angle variables for general relativity, New J. Phys. 10 (2008) 083006 [arXiv:0802.0864] [INSPIRE].
  71. [71]
    B. Dittrich and J.P. Ryan, Phase space descriptions for simplicial 4d geometries, Class. Quant. Grav. 28 (2011) 065006 [arXiv:0807.2806] [INSPIRE].
  72. [72]
    V. Bonzom, From lattice BF gauge theory to area-angle Regge calculus, Class. Quant. Grav. 26 (2009) 155020 [arXiv:0903.0267] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  73. [73]
    L. Freidel and S. Speziale, Twisted geometries: A geometric parametrisation of SU(2) phase space, Phys. Rev. D 82 (2010) 084040 [arXiv:1001.2748] [INSPIRE].
  74. [74]
    B. Dittrich and J.P. Ryan, Simplicity in simplicial phase space, Phys. Rev. D 82 (2010) 064026 [arXiv:1006.4295] [INSPIRE].
  75. [75]
    J.W. Barrett and L. Crane, Relativistic spin networks and quantum gravity, J. Math. Phys. 39 (1998) 3296 [gr-qc/9709028] [INSPIRE].
  76. [76]
    E.R. Livine and S. Speziale, A New spinfoam vertex for quantum gravity, Phys. Rev. D 76 (2007) 084028 [arXiv:0705.0674] [INSPIRE].
  77. [77]
    J. Engle, E. Livine, R. Pereira and C. Rovelli, LQG vertex with finite Immirzi parameter, Nucl. Phys. B 799 (2008) 136 [arXiv:0711.0146] [INSPIRE].
  78. [78]
    L. Freidel and K. Krasnov, A New Spin Foam Model for 4d Gravity, Class. Quant. Grav. 25 (2008) 125018 [arXiv:0708.1595] [INSPIRE].
  79. [79]
    M. Dupuis and E.R. Livine, Holomorphic Simplicity Constraints for 4d Spinfoam Models, Class. Quant. Grav. 28 (2011) 215022 [arXiv:1104.3683] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  80. [80]
    A. Baratin and D. Oriti, Group field theory and simplicial gravity path integrals: A model for Holst-Plebanski gravity, Phys. Rev. D 85 (2012) 044003 [arXiv:1111.5842] [INSPIRE].
  81. [81]
    F. Anzà and S. Speziale, A note on the secondary simplicity constraints in loop quantum gravity, Class. Quant. Grav. 32 (2015) 195015 [arXiv:1409.0836] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  82. [82]
    J.W. Barrett, First order Regge calculus, Class. Quant. Grav. 11 (1994) 2723 [hep-th/9404124] [INSPIRE].
  83. [83]
    W. Wieland, New boundary variables for classical and quantum gravity on a null surface, Class. Quant. Grav. 34 (2017) 215008 [arXiv:1704.07391] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  84. [84]
    W. Wieland, Conformal boundary conditions, loop gravity and the continuum, JHEP 10 (2018) 089 [arXiv:1804.08643] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  85. [85]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  86. [86]
    B. Czech, L. Lamprou, S. McCandlish and J. Sully, Integral Geometry and Holography, JHEP 10 (2015) 175 [arXiv:1505.05515] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  87. [87]
    B. Dittrich, From the discrete to the continuous: Towards a cylindrically consistent dynamics, New J. Phys. 14 (2012) 123004 [arXiv:1205.6127] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  88. [88]
    B. Bahr, B. Dittrich, F. Hellmann and W. Kaminski, Holonomy Spin Foam Models: Definition and Coarse Graining, Phys. Rev. D 87 (2013) 044048 [arXiv:1208.3388] [INSPIRE].
  89. [89]
    B. Dittrich, The continuum limit of loop quantum gravity — a framework for solving the theory, in Loop Quantum Gravity: The First 30 Years, A. Ashtekar and J. Pullin eds., pp. 153-179 (2017) [DOI:] [arXiv:1409.1450] [INSPIRE].
  90. [90]
    B. Bahr, On background-independent renormalization of spin foam models, Class. Quant. Grav. 34 (2017) 075001 [arXiv:1407.7746] [INSPIRE].
  91. [91]
    B. Dittrich, S. Mizera and S. Steinhaus, Decorated tensor network renormalization for lattice gauge theories and spin foam models, New J. Phys. 18 (2016) 053009 [arXiv:1409.2407] [INSPIRE].
  92. [92]
    C. Delcamp and B. Dittrich, Towards a phase diagram for spin foams, Class. Quant. Grav. 34 (2017) 225006 [arXiv:1612.04506] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  93. [93]
    B. Bahr, G. Rabuffo and S. Steinhaus, Renormalization of symmetry restricted spin foam models with curvature in the asymptotic regime, Phys. Rev. D 98 (2018) 106026 [arXiv:1804.00023] [INSPIRE].
  94. [94]
    B. Bahr and S. Steinhaus, Numerical evidence for a phase transition in 4d spin foam quantum gravity, Phys. Rev. Lett. 117 (2016) 141302 [arXiv:1605.07649] [INSPIRE].
  95. [95]
    B. Bahr and S. Steinhaus, Hypercuboidal renormalization in spin foam quantum gravity, Phys. Rev. D 95 (2017) 126006 [arXiv:1701.02311] [INSPIRE].
  96. [96]
    R. Oeckl, A ‘General boundary’ formulation for quantum mechanics and quantum gravity, Phys. Lett. B 575 (2003) 318 [hep-th/0306025] [INSPIRE].
  97. [97]
    B. Dittrich and S. Steinhaus, Time evolution as refining, coarse graining and entangling, New J. Phys. 16 (2014) 123041 [arXiv:1311.7565] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  2. 2.Department of Physics and AstronomyUniversity of WaterlooWaterlooCanada
  3. 3.Institute for Mathematics, Astrophysics and Particle PhysicsRadboud UniversityNijmegenThe Netherlands
  4. 4.Physics Program, Bard CollegeAnnandale-On-HudsonU.S.A.

Personalised recommendations