Advertisement

Journal of High Energy Physics

, 2019:143 | Cite as

Subleading BMS charges and fake news near null infinity

  • Hadi Godazgar
  • Mahdi GodazgarEmail author
  • C. N. Pope
Open Access
Regular Article - Theoretical Physics
  • 20 Downloads

Abstract

In this paper we establish a relation between the non-linearly conserved New-man-Penrose charges and certain subleading terms in a large-r expansion of the BMS charges in an asymptotically-flat spacetime. We define the subleading BMS charges by considering a 1/r-expansion of the Barnich-Brandt prescription for defining asymptotic charges in an asymptotically-flat spacetime. At the leading order, i.e. 1/r0, one obtains the standard BMS charges, which would be integrable and conserved in the absence of a flux term at null infinity, corresponding to gravitational radiation, or Bondi news. At subleading orders, analogous terms in general provide obstructions to the integrability of the corresponding charges. Since the subleading terms are defined close to null infinity, but vanish actually at infinity, the analogous obstructions are not associated with genuine Bondi news. One may instead describe them as corresponding to “fake news”. At order r−3, we find that a set of integrable charges can be defined and that these are related to the ten non-linearly conserved Newman-Penrose charges.

Keywords

Classical Theories of Gravity Space-Time Symmetries 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    G. Barnich and C. Troessaert, Aspects of the BMS/CFT correspondence, JHEP 05 (2010) 062 [arXiv:1001.1541] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    G. Barnich and C. Troessaert, Comments on holographic current algebras and asymptotically flat four dimensional spacetimes at null infinity, JHEP 11 (2013) 003 [arXiv:1309.0794] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    A. Strominger, On BMS Invariance of Gravitational Scattering, JHEP 07 (2014) 152 [arXiv:1312.2229] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinberg’s soft graviton theorem, JHEP 05 (2015) 151 [arXiv:1401.7026] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    S.W. Hawking, M.J. Perry and A. Strominger, Soft Hair on Black Holes, Phys. Rev. Lett. 116 (2016) 231301 [arXiv:1601.00921] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S.W. Hawking, M.J. Perry and A. Strominger, Superrotation Charge and Supertranslation Hair on Black Holes, JHEP 05 (2017) 161 [arXiv:1611.09175] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    M.M. Sheikh-Jabbari, Residual diffeomorphisms and symplectic soft hairs: The need to refine strict statement of equivalence principle, Int. J. Mod. Phys. D 25 (2016) 1644019 [arXiv:1603.07862] [INSPIRE].
  8. [8]
    H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity: 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21 [INSPIRE].
  9. [9]
    R.K. Sachs, Gravitational waves in general relativity: 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103 [INSPIRE].
  10. [10]
    A. Ashtekar and M. Streubel, Symplectic Geometry of Radiative Modes and Conserved Quantities at Null Infinity, Proc. Roy. Soc. Lond. A 376 (1981) 585 [INSPIRE].
  11. [11]
    J. Lee and R.M. Wald, Local symmetries and constraints, J. Math. Phys. 31 (1990) 725 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].
  13. [13]
    R.M. Wald and A. Zoupas, A General definition of ‘conserved quantities’ in general relativity and other theories of gravity, Phys. Rev. D 61 (2000) 084027 [gr-qc/9911095] [INSPIRE].
  14. [14]
    G. Barnich and F. Brandt, Covariant theory of asymptotic symmetries, conservation laws and central charges, Nucl. Phys. B 633 (2002) 3 [hep-th/0111246] [INSPIRE].
  15. [15]
    G. Barnich and C. Troessaert, BMS charge algebra, JHEP 12 (2011) 105 [arXiv:1106.0213] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    E.T. Newman and R. Penrose, New conservation laws for zero rest-mass fields in asymptotically flat space-time, Proc. Roy. Soc. Lond. A 305 (1968) 175 [INSPIRE].
  17. [17]
    E.T. Newman and R. Penrose, An Approach to gravitational radiation by a method of spin coefficients, J. Math. Phys. 3 (1962) 566 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    T. Damour, Analytical calculations of gravitational radiation, in proceedings of the 4th Marcel Grossmann Meeting on the Recent Developments of General Relativity, Rome, Italy, 17-21 June 1985, R. Ruffini ed., North-Holland, Amsterdam The Netherlands (1985), pp. 365-392 [INSPIRE].
  19. [19]
    D. Christodoulou, The global initial value problem in general relativity, in proceedings of the 9th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories (MG 9), Rome, Italy, 2-9 July 2000, V.G. Gurzadyan, R.T. Jantzen and R. Ruffini eds., World Scientific (2002), pp. 44-54.Google Scholar
  20. [20]
    S. Aretakis, Stability and Instability of Extreme Reissner-Nordström Black Hole Spacetimes for Linear Scalar Perturbations I, Commun. Math. Phys. 307 (2011) 17 [arXiv:1110.2007] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    S. Aretakis, Horizon Instability of Extremal Black Holes, Adv. Theor. Math. Phys. 19 (2015) 507 [arXiv:1206.6598] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    P. Bizon and H. Friedrich, A remark about wave equations on the extreme Reissner-Nordström black hole exterior, Class. Quant. Grav. 30 (2013) 065001 [arXiv:1212.0729] [INSPIRE].
  23. [23]
    J. Lucietti, K. Murata, H.S. Reall and N. Tanahashi, On the horizon instability of an extreme Reissner-Nordström black hole, JHEP 03 (2013) 035 [arXiv:1212.2557] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    H. Godazgar, M. Godazgar and C.N. Pope, Aretakis Charges and Asymptotic Null Infinity, Phys. Rev. D 96 (2017) 084055 [arXiv:1707.09804] [INSPIRE].
  25. [25]
    E. Conde and P. Mao, BMS Supertranslations and Not So Soft Gravitons, JHEP 05 (2017) 060 [arXiv:1612.08294] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    G. Compère and A. Fiorucci, Advanced Lectures in General Relativity, arXiv:1801.07064 [INSPIRE].
  27. [27]
    L.F. Abbott and S. Deser, Stability of Gravity with a Cosmological Constant, Nucl. Phys. B 195 (1982) 76 [INSPIRE].
  28. [28]
    R. Geroch, Asymptotic Structure of Space-Time, Springer U.S., Boston MA U.S.A. (1977), pp. 1-105.Google Scholar
  29. [29]
    J.N. Goldberg, A.J. MacFarlane, E.T. Newman, F. Rohrlich and E.C.G. Sudarshan, Spin-s spherical harmonics and ð, J. Math. Phys. 8 (1967) 2155 [INSPIRE].
  30. [30]
    J. Goldberg, Conservation laws, constants of the motion, and Hamiltonians, in Topics in Mathematical Physics, General Relativity and Cosmology, H. García-Compeán, B. Mielnik, M. Montesinos and M. Przanowski eds., World Scientific (2006).Google Scholar
  31. [31]
    Y. Angelopoulos, S. Aretakis and D. Gajic, Late-time asymptotics for the wave equation on spherically symmetric, stationary spacetimes, Adv. Math. 323 (2018) 529 [arXiv:1612.01566] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    Y. Angelopoulos, S. Aretakis and D. Gajic, Logarithmic corrections in the asymptotic expansion for the radiation field along null infinity, arXiv:1712.09977 [INSPIRE].
  33. [33]
    Y. Angelopoulos, S. Aretakis and D. Gajic, Late-time asymptotics for the wave equation on extremal Reissner-Nordström backgrounds, arXiv:1807.03802 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)PotsdamGermany
  2. 2.Institut für Theoretische Physik, Eidgenössische Technische Hochschule ZürichZürichSwitzerland
  3. 3.George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and AstronomyTexas A&M UniversityCollege StationU.S.A.
  4. 4.DAMTP, Centre for Mathematical SciencesCambridge UniversityCambridgeU.K.

Personalised recommendations