Advertisement

Journal of High Energy Physics

, 2019:141 | Cite as

Light dark matter showering under broken dark U(1) — revisited

  • Junmou ChenEmail author
  • Pyungwon Ko
  • Hsiang-nan Li
  • Jinmian Li
  • Hiroshi Yokoya
Open Access
Regular Article - Theoretical Physics
  • 16 Downloads

Abstract

It was proposed recently that different chiralities of the dark matter (DM) fermion under a broken dark U(1) gauge group can lead to distinguishable signatures at the LHC through shower patterns, which may reveal the mass origin of the dark sector. We study this subject further by examining the dark shower of two simplified models, the dubbed Chiral Model and the Vector Model. We derive a more complete set of collinear splitting functions with power corrections, specifying the helicities of the initial DM fermion and including the contribution from an extra degree of freedom, the dark Higgs boson. The dark shower is then implemented with these splitting functions, and the new features resulting from its correct modelling are emphasized. It is shown that the DM fermion chirality can be differentiated by measuring dark shower patterns, especially the DM jet energy profile, which is almost independent of the DM energy.

Keywords

Jets QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    B.W. Lee and S. Weinberg, Cosmological Lower Bound on Heavy Neutrino Masses, Phys. Rev. Lett. 39 (1977) 165 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].
  3. [3]
    PAMELA collaboration, An anomalous positron abundance in cosmic rays with energies 1.5100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [INSPIRE].
  4. [4]
    D.N. Spergel and P.J. Steinhardt, Observational evidence for selfinteracting cold dark matter, Phys. Rev. Lett. 84 (2000) 3760 [astro-ph/9909386] [INSPIRE].
  5. [5]
    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A Theory of Dark Matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].ADSGoogle Scholar
  6. [6]
    M. Cirelli, M. Kadastik, M. Raidal and A. Strumia, Model-independent implications of the e ± , \( \overline{p} \) cosmic ray spectra on properties of Dark Matter, Nucl. Phys. B 813 (2009) 1 [Addendum ibid. B 873 (2013) 530] [arXiv:0809.2409] [INSPIRE].
  7. [7]
    N. Arkani-Hamed and N. Weiner, LHC Signals for a SuperUnified Theory of Dark Matter, JHEP 12 (2008) 104 [arXiv:0810.0714] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J. Alexander et al., Dark Sectors 2016 Workshop: Community Report, 2016, arXiv:1608.08632 [INSPIRE].
  9. [9]
    S. Baek, P. Ko and W.-I. Park, Singlet Portal Extensions of the Standard Seesaw Models to a Dark Sector with Local Dark Symmetry, JHEP 07 (2013) 013 [arXiv:1303.4280] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    P. Ko, Hidden Sector DM Models with Local Dark Gauge Symmetries: Higgs Portal DM Models and Beyond, New Phys. Sae Mulli 66 (2016) 966 [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    B. Holdom, Two U(1)’s and Epsilon Charge Shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    T. Cohen, M. Lisanti, H.K. Lou and S. Mishra-Sharma, LHC Searches for Dark Sector Showers, JHEP 11 (2017) 196 [arXiv:1707.05326] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J. Chen, T. Han and B. Tweedie, Electroweak Splitting Functions and High Energy Showering, JHEP 11 (2017) 093 [arXiv:1611.00788] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Buschmann, J. Kopp, J. Liu and P.A.N. Machado, Lepton Jets from Radiating Dark Matter, JHEP 07 (2015) 045 [arXiv:1505.07459] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Zhang, M. Kim, H.-S. Lee and M. Park, Examining the origin of dark matter mass at colliders, Phys. Rev. D 98 (2018) 055027 [arXiv:1612.02850] [INSPIRE].ADSGoogle Scholar
  16. [16]
    N.F. Bell, Y. Cai and R.K. Leane, Impact of mass generation for spin-1 mediator simplified models, JCAP 01 (2017) 039 [arXiv:1610.03063] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    H. Ruegg and M. Ruiz-Altaba, The Stueckelberg field, Int. J. Mod. Phys. A 19 (2004) 3265 [hep-th/0304245] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models, JHEP 02 (2016) 016 [arXiv:1510.02110] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  20. [20]
    S. Alekhin et al., A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case, Rept. Prog. Phys. 79 (2016) 124201 [arXiv:1504.04855] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    Y. Kitadono and H.-n. Li, Jet substructures of boosted polarized top quarks, Phys. Rev. D 89 (2014) 114002 [arXiv:1403.5512] [INSPIRE].ADSGoogle Scholar
  22. [22]
    Y. Kitadono and H.-n. Li, Jet substructures of boosted polarized hadronic top quarks, Phys. Rev. D 93 (2016) 054043 [arXiv:1511.08675] [INSPIRE].ADSGoogle Scholar
  23. [23]
    H.-n. Li, Z. Li and C.-P. Yuan, QCD resummation for jet substructures, Phys. Rev. Lett. 107 (2011) 152001 [arXiv:1107.4535] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    H.-n. Li, Z. Li and C.-P. Yuan, QCD resummation for light-particle jets, Phys. Rev. D 87 (2013) 074025 [arXiv:1206.1344] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Junmou Chen
    • 1
    Email author
  • Pyungwon Ko
    • 1
    • 2
  • Hsiang-nan Li
    • 4
  • Jinmian Li
    • 3
  • Hiroshi Yokoya
    • 2
  1. 1.School of PhysicsKorean Institute for Advanced StudySeoulKorea
  2. 2.Quantum Universe CenterKorean Institute for Advanced StudySeoulKorea
  3. 3.College of Physical Science and TechnologySichuan UniversityChengduChina
  4. 4.Institute of PhysicsAcademia SinicaTaipeiRepublic of China

Personalised recommendations