Journal of High Energy Physics

, 2019:137 | Cite as

Entanglement evolution in Lifshitz-type scalar theories

  • M. Reza Mohammadi Mozaffar
  • Ali MollabashiEmail author
Open Access
Regular Article - Theoretical Physics


We study propagation of entanglement after a mass quench in free scalar Lifshitz theories. We show that entanglement entropy goes across three distinct growth regimes before relaxing to a generalized Gibbs ensemble, namely, initial rapid growth, main linear growth and tortoise saturation. We show that although a wide spectrum of quasi-particles are responsible for entanglement propagation, as long as the occupation number of the zero mode is not divergent, the linear main growth regime is dominated by the fastest quasi-particle propagating on the edges of a widen light-cone. We present strong evidences in support of effective causality and therefore define an effective notion of saturation time in these theories. The larger the dynamical exponent is, the shorter the linear main growth regime becomes. Due to a pile of tortoise modes which become dominant after saturation of fast modes, exact saturation time is postponed to infinity.


Integrable Field Theories Lattice Integrable Models Lattice Quantum Field Theory Space-Time Symmetries 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. 0504 (2005) P04010 [cond-mat/0503393] [INSPIRE].
  2. [2]
    V. Alba and P. Calabrese, Entanglement and thermodynamics after a quantum quench in integrable systems, Proc. Nat. Acad. Sci. 114 (2017) 7947 [arXiv:1608.00614].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    M. Rigol, V. Dunjko, V. Yurovsky and M. Olshanii, Relaxation in a Completely Integrable Many-Body Quantum System: An Ab Initio Study of the Dynamics of the Highly Excited States of 1D Lattice Hard-Core Bosons, Phys. Rev. Lett. 98 (2007) 050405 [cond-mat/0604476].
  4. [4]
    S. Sotiriadis and P. Calabrese, Validity of the GGE for quantum quenches from interacting to noninteracting models, J. Stat. Mech. 1407 (2014) P07024 [arXiv:1403.7431] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  5. [5]
    V. Alba and P. Calabrese, Entanglement dynamics after quantum quenches in generic integrable systems, SciPost Phys. 4 (2018) 017 [arXiv:1712.07529] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    E.M. Lifshitz, On the Theory of Second-Order Phase Transitions I, Zh. Eksp. Teor. Fiz. 11 (1941) 255.Google Scholar
  7. [7]
    E.M. Lifshitz, On the Theory of Second-Order Phase Transitions II, Zh. Eksp. Teor. Fiz. 11 (1941) 269.Google Scholar
  8. [8]
    J.A. Hertz, Quantum critical phenomena, Phys. Rev. B 14 (1976) 1165 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S.N. Solodukhin, Entanglement Entropy in Non-Relativistic Field Theories, JHEP 04 (2010) 101 [arXiv:0909.0277] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    T. Zhou, X. Chen, T. Faulkner and E. Fradkin, Entanglement entropy and mutual information of circular entangling surfaces in the 2 + 1-dimensional quantum Lifshitz model, J. Stat. Mech. 1609 (2016) 093101 [arXiv:1607.01771] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  11. [11]
    Y. Kusuki, T. Takayanagi and K. Umemoto, Holographic Entanglement Entropy on Generic Time Slices, JHEP 06 (2017) 021 [arXiv:1703.00915] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    M.R. Mohammadi Mozaffar and A. Mollabashi, Entanglement in Lifshitz-type Quantum Field Theories, JHEP 07 (2017) 120 [arXiv:1705.00483] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    T. He, J.M. Magan and S. Vandoren, Entanglement Entropy in Lifshitz Theories, SciPost Phys. 3 (2017) 034 [arXiv:1705.01147] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M.R. Mohammadi Mozaffar and A. Mollabashi, Logarithmic Negativity in Lifshitz Harmonic Models, J. Stat. Mech. 1805 (2018) 053113 [arXiv:1712.03731] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  15. [15]
    S.A. Gentle and S. Vandoren, Lifshitz entanglement entropy from holographic cMERA, JHEP 07 (2018) 013 [arXiv:1711.11509] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    J. Alexandre, Lifshitz-type Quantum Field Theories in Particle Physics, Int. J. Mod. Phys. A 26 (2011) 4523 [arXiv:1109.5629] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    H. Liu and S.J. Suh, Entanglement Tsunami: Universal Scaling in Holographic Thermalization, Phys. Rev. Lett. 112 (2014) 011601 [arXiv:1305.7244] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J. Järvelä, Various Aspects of Holographic Entanglement Entropy and Mutual Information, MSc Thesis (2014) [] [INSPIRE].
  19. [19]
    J.S. Cotler, M.P. Hertzberg, M. Mezei and M.T. Mueller, Entanglement Growth after a Global Quench in Free Scalar Field Theory, JHEP 11 (2016) 166 [arXiv:1609.00872] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Chapman et al., Complexity and entanglement for thermofield double states, arXiv:1810.05151 [INSPIRE].
  21. [21]
    V. Alba and P. Calabrese, Quantum information dynamics in multipartite integrable systems, arXiv:1809.09119 [INSPIRE].
  22. [22]
    V. Alba, Entanglement and quantum transport in integrable systems, Phys. Rev. B 97 (2018) 245135 [arXiv:1706.00020] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Bastianello and P. Calabrese, Spreading of entanglement and correlations after a quench with intertwined quasiparticles, SciPost Phys. 5 (2018) 033 [arXiv:1807.10176] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    B. Bertini, M. Fagotti, L. Piroli and P. Calabrese, Entanglement evolution and generalised hydrodynamics: noninteracting systems, J. Phys. A 51 (2018) 39LT01 [arXiv:1805.01884] [INSPIRE].
  25. [25]
    B. Bertini, E. Tartaglia and P. Calabrese, Entanglement and diagonal entropies after a quench with no pair structure, J. Stat. Mech. 1806 (2018) 063104 [arXiv:1802.10589] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  26. [26]
    M. Mestyán, V. Alba and P. Calabrese, Rényi entropies of generic thermodynamic macrostates in integrable systems, arXiv:1806.00624 [INSPIRE].
  27. [27]
    V. Alba and P. Calabrese, Rényi entropies after releasing the Néel state in the XXZ spin-chain, arXiv:1709.02193 [INSPIRE].
  28. [28]
    V. Alba and P. Calabrese, Quench action and Renyi entropies in integrable systems, Phys. Rev. B 96 (2017) 115421 [arXiv:1705.10765] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    P. Calabrese and J. Cardy, Quantum Quenches in Extended Systems, J. Stat. Mech. 0706 (2007) P06008 [arXiv:0704.1880] [INSPIRE].MathSciNetGoogle Scholar
  30. [30]
    E.H. Lieb and D.W. Robinson, The finite group velocity of quantum spin systems, Commun. Math. Phys. 28 (1972) 251 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    O. Buerschaper Dynamics of Correlations and Quantum Phase Transitions in Bosonic Lattice Systems, Diploma Thesis, Ludwig-Maximilians University, Munich (2007).Google Scholar
  32. [32]
    B. Nachtergaele and R. Sims, Lieb-Robinson bounds in quantum many-body physics, in Entropy and the Quantum, Contemp. Math 529 (2010) 141 [arXiv:1004.2086].
  33. [33]
    M.R.M. Mozaffar and A. Mollabashi, in preparation.Google Scholar
  34. [34]
    D.A. Roberts and B. Swingle, Lieb-Robinson Bound and the Butterfly Effect in Quantum Field Theories, Phys. Rev. Lett. 117 (2016) 091602 [arXiv:1603.09298] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    V. Keranen, W. Sybesma, P. Szepietowski and L. Thorlacius, Correlation functions in theories with Lifshitz scaling, JHEP 05 (2017) 033 [arXiv:1611.09371] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    M. Ghasemi Nezhadhaghighi and M.A. Rajabpour, Entanglement dynamics in short and long-range harmonic oscillators, Phys. Rev. B 90 (2014) 205438 [arXiv:1408.3744] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M.A. Rajabpour and S. Sotiriadis, Quantum quench in long-range field theories, Phys. Rev. B 91 (2015) 045131 [arXiv:1409.6558] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].ADSMathSciNetGoogle Scholar
  39. [39]
    Y.K. Yazdi, Zero Modes and Entanglement Entropy, JHEP 04 (2017) 140 [arXiv:1608.04744] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    M. Alishahiha, A. Faraji Astaneh and M.R. Mohammadi Mozaffar, Thermalization in backgrounds with hyperscaling violating factor, Phys. Rev. D 90 (2014) 046004 [arXiv:1401.2807] [INSPIRE].ADSGoogle Scholar
  42. [42]
    P. Fonda, L. Franti, V. Keränen, E. Keski-Vakkuri, L. Thorlacius and E. Tonni, Holographic thermalization with Lifshitz scaling and hyperscaling violation, JHEP 08 (2014) 051 [arXiv:1401.6088] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S.F. Lokhande, Spread of Entanglement in Non-Relativistic Theories, arXiv:1808.09979 [INSPIRE].
  44. [44]
    A. Buchel, R.C. Myers and A. van Niekerk, Universality of Abrupt Holographic Quenches, Phys. Rev. Lett. 111 (2013) 201602 [arXiv:1307.4740] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S.R. Das, D.A. Galante and R.C. Myers, Quantum Quenches in Free Field Theory: Universal Scaling at Any Rate, JHEP 05 (2016) 164 [arXiv:1602.08547] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    P. Caputa, S.R. Das, M. Nozaki and A. Tomiya, Quantum Quench and Scaling of Entanglement Entropy, Phys. Lett. B 772 (2017) 53 [arXiv:1702.04359] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    D. Das, S.R. Das, D.A. Galante, R.C. Myers and K. Sengupta, An exactly solvable quench protocol for integrable spin models, JHEP 11 (2017) 157 [arXiv:1706.02322] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    M.R.M. Mozaffar and A. Mollabashi, work in progress.Google Scholar
  49. [49]
    J. Cheyne and D. Mattingly, Constructing entanglement wedges for Lifshitz spacetimes with Lifshitz gravity, Phys. Rev. D 97 (2018) 066024 [arXiv:1707.05913] [INSPIRE].ADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of GuilanRashtIran
  2. 2.School of PhysicsInstitute for Research in Fundamental Sciences (IPM)TehranIran
  3. 3.Max-Planck-Institut für PhysikWerner-Heisenberg-InstitutMünchenGermany

Personalised recommendations