Journal of High Energy Physics

, 2019:129 | Cite as

Initial-state energy loss in cold QCD matter and the Drell-Yan process

  • François Arleo
  • Charles-Joseph NaïmEmail author
  • Stephane Platchkov
Open Access
Regular Article - Theoretical Physics


The effects of parton energy loss in nuclear matter on the Drell-Yan process in pA and πA collisions at fixed-target energies are investigated. Calculations are based on the Baier-Dokshitzer-Mueller-Peigné-Schiff (BDMPS) framework embedded in a next-to-leading order calculation, using the transport coefficient extracted from J/ψ measurements. Model calculations prove in good agreement with preliminary measurements by the E906 experiment, despite a slightly different magnitude, supporting a consistent picture between Drell-Yan and J/ψ data. Predictions for the COMPASS future measurements in πA collisions at \( \sqrt{s}=18.9 \) GeV are also performed. At higher collision energy (\( \sqrt{s}=38.7 \) GeV), Drell-Yan measurements are only slightly affected by energy loss effects. On the contrary, the E906 results turn out in clear disagreement with nuclear PDF effects alone. The comparison of E772, E866, and E906 measurements indicates for the first time a clear violation of QCD factorization in Drell-Yan production in pA collisions.


Phenomenological Models QCD Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    A. Majumder and M. Van Leeuwen, The Theory and Phenomenology of Perturbative QCD Based Jet Quenching, Prog. Part. Nucl. Phys. 66 (2011) 41 [arXiv:1002.2206] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    Y. Mehtar-Tani, J.G. Milhano and K. Tywoniuk, Jet physics in heavy-ion collisions, Int. J. Mod. Phys. A 28 (2013) 1340013 [arXiv:1302.2579] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    N. Armesto and E. Scomparin, Heavy-ion collisions at the Large Hadron Collider: a review of the results from Run 1, Eur. Phys. J. Plus 131 (2016) 52 [arXiv:1511.02151] [INSPIRE].CrossRefGoogle Scholar
  4. [4]
    G.-Y. Qin and X.-N. Wang, Jet quenching in high-energy heavy-ion collisions, Int. J. Mod. Phys. E 24 (2015) 1530014 [arXiv:1511.00790] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    F. Arleo, Aspects of hard QCD processes in proton-nucleus collisions, Nucl. Part. Phys. Proc. 289-290 (2017) 71 [arXiv:1612.07987] [INSPIRE].
  6. [6]
    S. Peigné and A. Smilga, Energy losses in a hot plasma revisited, Phys. Usp. 52 (2009) 659 [Usp. Fiz. Nauk 179 (2009) 697] [arXiv:0810.5702] [INSPIRE].
  7. [7]
    F. Arleo, S. Peigné and T. Sami, Revisiting scaling properties of medium-induced gluon radiation, Phys. Rev. D 83 (2011) 114036 [arXiv:1006.0818] [INSPIRE].ADSGoogle Scholar
  8. [8]
    F. Arleo and S. Peigné, J/ψ suppression in pA collisions from parton energy loss in cold QCD matter, Phys. Rev. Lett. 109 (2012) 122301 [arXiv:1204.4609] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    F. Arleo and S. Peigné, Heavy-quarkonium suppression in pA collisions from parton energy loss in cold QCD matter, JHEP 03 (2013) 122 [arXiv:1212.0434] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    F. Arleo, R. Kolevatov and S. Peigné, Coherent medium-induced gluon radiation in hard forward 1 → 1 partonic processes, Phys. Rev. D 93 (2016) 014006 [arXiv:1402.1671] [INSPIRE].ADSGoogle Scholar
  11. [11]
    S. Peigné and R. Kolevatov, Medium-induced soft gluon radiation in forward dijet production in relativistic proton-nucleus collisions, JHEP 01 (2015) 141 [arXiv:1405.4241] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    F. Arleo, R. Kolevatov, S. Peigné and M. Rustamova, Centrality and p dependence of J/ψ suppression in proton-nucleus collisions from parton energy loss, JHEP 05 (2013) 155 [arXiv:1304.0901] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    F. Arleo and S. Peigné, Disentangling Shadowing from Coherent Energy Loss using the Drell-Yan Process, Phys. Rev. D 95 (2017) 011502 [arXiv:1512.01794] [INSPIRE].ADSGoogle Scholar
  14. [14]
    R. Vogt, The x F dependence of ψ and Drell-Yan production, Phys. Rev. C 61 (2000) 035203 [hep-ph/9907317] [INSPIRE].
  15. [15]
    E. Wang and X.-N. Wang, Jet tomography of dense and nuclear matter, Phys. Rev. Lett. 89 (2002) 162301 [hep-ph/0202105] [INSPIRE].
  16. [16]
    F. Arleo, Quenching of hadron spectra in DIS on nuclear targets, Eur. Phys. J. C 30 (2003) 213 [hep-ph/0306235] [INSPIRE].
  17. [17]
    E772 collaboration, Nuclear dependence of dimuon production at 800 GeV, Phys. Rev. Lett. 64 (1990) 2479 [INSPIRE].
  18. [18]
    NuSea collaboration, Parton energy loss limits and shadowing in Drell-Yan dimuon production, Phys. Rev. Lett. 83 (1999) 2304 [hep-ex/9906010] [INSPIRE].
  19. [19]
    D. de Florian, R. Sassot, P. Zurita and M. Stratmann, Global Analysis of Nuclear Parton Distributions, Phys. Rev. D 85 (2012) 074028 [arXiv:1112.6324] [INSPIRE].ADSGoogle Scholar
  20. [20]
    K. Kovařík et al., nCTEQ15: Global analysis of nuclear parton distributions with uncertainties in the CTEQ framework, Phys. Rev. D 93 (2016) 085037 [arXiv:1509.00792] [INSPIRE].
  21. [21]
    K.J. Eskola, P. Paakkinen, H. Paukkunen and C.A. Salgado, EPPS16: Nuclear parton distributions with LHC data, Eur. Phys. J. C 77 (2017) 163 [arXiv:1612.05741] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M.B. Johnson et al., Energy loss versus shadowing in the Drell-Yan reaction on nuclei, Phys. Rev. C 65 (2002) 025203 [hep-ph/0105195] [INSPIRE].
  23. [23]
    R.B. Neufeld, I. Vitev and B.-W. Zhang, A possible determination of the quark radiation length in cold nuclear matter, Phys. Lett. B 704 (2011) 590 [arXiv:1010.3708] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    L.-H. Song and L.-W. Yan, Constraining the transport coefficient in cold nuclear matter with the Drell-Yan process, Phys. Rev. C 96 (2017) 045203 [INSPIRE].ADSGoogle Scholar
  25. [25]
    NA3 collaboration, Test of Nuclear Effects in Hadronic Dimuon Production, Phys. Lett. B 104 (1981) 335 [INSPIRE].
  26. [26]
    F. Arleo, Constraints on quark energy loss from Drell-Yan data, Phys. Lett. B 532 (2002) 231 [hep-ph/0201066] [INSPIRE].
  27. [27]
    E906 collaboration, Drell-Yan Measurements by Fermilab E-906/SeaQuest, (2012)
  28. [28]
    P.-J. Lin, Measurement of Quark Energy Loss in Cold Nuclear Matter at Fermilab E906/SeaQuest, Ph.D. Thesis, Colorado University (2017) [FERMILAB-THESIS-2017-18] [] [INSPIRE].
  29. [29]
    COMPASS collaboration, First measurement of transverse-spin-dependent azimuthal asymmetries in the Drell-Yan process, Phys. Rev. Lett. 119 (2017) 112002 [arXiv:1704.00488] [INSPIRE].
  30. [30]
    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].
  31. [31]
    S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009) 082001 [arXiv:0903.2120] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].ADSGoogle Scholar
  34. [34]
    M. Glück, E. Reya and A. Vogt, Pionic parton distributions, Z. Phys. C 53 (1992) 651 [INSPIRE].ADSGoogle Scholar
  35. [35]
    P.J. Sutton, A.D. Martin, R.G. Roberts and W.J. Stirling, Parton distributions for the pion extracted from Drell-Yan and prompt photon experiments, Phys. Rev. D 45 (1992) 2349 [INSPIRE].ADSGoogle Scholar
  36. [36]
    P.C. Barry, N. Sato, W. Melnitchouk and C.-R. Ji, First Monte Carlo Global QCD Analysis of Pion Parton Distributions, Phys. Rev. Lett. 121 (2018) 152001 [arXiv:1804.01965] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    R. Baier, Y.L. Dokshitzer, A.H. Mueller and D. Schiff, Quenching of hadron spectra in media, JHEP 09 (2001) 033 [hep-ph/0106347] [INSPIRE].
  38. [38]
    F. Arleo, Tomography of cold and hot QCD matter: Tools and diagnosis, JHEP 11 (2002) 044 [hep-ph/0210104] [INSPIRE].
  39. [39]
    C.A. Salgado and U.A. Wiedemann, Calculating quenching weights, Phys. Rev. D 68 (2003) 014008 [hep-ph/0302184] [INSPIRE].
  40. [40]
    R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigné and D. Schiff, Radiative energy loss and p T broadening of high-energy partons in nuclei, Nucl. Phys. B 484 (1997) 265 [hep-ph/9608322] [INSPIRE].
  41. [41]
    M. Gyulassy, P. Levai and I. Vitev, Jet quenching in thin quark gluon plasmas. 1. Formalism, Nucl. Phys. B 571 (2000) 197 [hep-ph/9907461] [INSPIRE].
  42. [42]
    X.-N. Wang and X.-f. Guo, Multiple parton scattering in nuclei: Parton energy loss, Nucl. Phys. A 696 (2001) 788 [hep-ph/0102230] [INSPIRE].
  43. [43]
    S.J. Brodsky and G.R. Farrar, Scaling Laws at Large Transverse Momentum, Phys. Rev. Lett. 31 (1973) 1153 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    NA10 collaboration, Nuclear Effects on the Nucleon Structure Functions in Hadronic High Mass Dimuon Production, Phys. Lett. B 193 (1987) 368 [INSPIRE].
  45. [45]
    H. Xing, Y. Guo, E. Wang and X.-N. Wang, Parton Energy Loss and Modified Beam Quark Distribution Functions in Drell-Yan Process in p + A Collisions, Nucl. Phys. A 879 (2012) 77 [arXiv:1110.1903] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    W.-t. Deng and X.-N. Wang, Multiple Parton Scattering in Nuclei: Modified DGLAP Evolution for Fragmentation Functions, Phys. Rev. C 81 (2010) 024902 [arXiv:0910.3403] [INSPIRE].ADSGoogle Scholar
  47. [47]
    P. Paakkinen, K.J. Eskola and H. Paukkunen, Applicability of pion-nucleus Drell-Yan data in global analysis of nuclear parton distribution functions, Phys. Lett. B 768 (2017) 7 [arXiv:1609.07262] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    P. Hoyer, M. Vanttinen and U. Sukhatme, Violation of factorization in charm hadroproduction, Phys. Lett. B 246 (1990) 217 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    Y.H. Leung, PHENIX measurements of charm, bottom, and Drell-Yan via dimuons in p + p and p + Au at \( \sqrt{s_{\mathrm{NN}}}=200 \) GeV, in proceedings of the Hard Probes 2018: International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions, Aix-Les-Bains, Savoie, France, 30 September–5 October 2018 and online pdf version at
  50. [50]
    LHCb collaboration, Physics case for an LHCb Upgrade II. Opportunities in flavour physics, and beyond, in the HL-LHC era, arXiv:1808.08865 [INSPIRE].
  51. [51]
    NA3 collaboration, Experimental J/ψ Hadronic Production from 150 to 280 GeV/c, Z. Phys. C 20 (1983) 101 [INSPIRE].
  52. [52]
    FNAL E866/NuSea collaboration, Measurement of differences between J/ψ and ψsuppression in pA collisions, Phys. Rev. Lett. 84 (2000) 3256 [nucl-ex/9909007] [INSPIRE].
  53. [53]
    PHENIX collaboration, Cold Nuclear Matter Effects on J/ψ Yields as a Function of Rapidity and Nuclear Geometry in Deuteron-Gold Collisions at \( \sqrt{s_{\mathrm{NN}}}=200 \) GeV, Phys. Rev. Lett. 107 (2011) 142301 [arXiv:1010.1246] [INSPIRE].
  54. [54]
    ALICE collaboration, J/ψ production and nuclear effects in p–Pb collisions at \( \sqrt{S_{\mathrm{NN}}}=5.02 \) TeV, JHEP 02 (2014) 073 [arXiv:1308.6726] [INSPIRE].
  55. [55]
    LHCb collaboration, Prompt and nonprompt J/ψ production and nuclear modification in pPb collisions at \( \sqrt{s_{\mathrm{NN}}}=8.16 \) TeV, Phys. Lett. B 774 (2017) 159 [arXiv:1706.07122] [INSPIRE].
  56. [56]
    M.J. Leitch, Overview of charm physics at RHIC, AIP Conf. Proc. 892 (2007) 404 [nucl-ex/0610031] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, Université Paris-SaclayPalaiseauFrance
  2. 2.IRFU, CEA, Université Paris-SaclayGif-sur-YvetteFrance

Personalised recommendations