Advertisement

Journal of High Energy Physics

, 2019:121 | Cite as

Energy flow networks: deep sets for particle jets

  • Patrick T. Komiske
  • Eric M. MetodievEmail author
  • Jesse Thaler
Open Access
Regular Article - Theoretical Physics

Abstract

A key question for machine learning approaches in particle physics is how to best represent and learn from collider events. As an event is intrinsically a variable-length unordered set of particles, we build upon recent machine learning efforts to learn directly from sets of features or “point clouds”. Adapting and specializing the “Deep Sets” framework to particle physics, we introduce Energy Flow Networks, which respect infrared and collinear safety by construction. We also develop Particle Flow Networks, which allow for general energy dependence and the inclusion of additional particle-level information such as charge and flavor. These networks feature a per-particle internal (latent) representation, and summing over all particles yields an overall event-level latent representation. We show how this latent space decomposition unifies existing event representations based on detector images and radiation moments. To demonstrate the power and simplicity of this set-based approach, we apply these networks to the collider task of discriminating quark jets from gluon jets, finding similar or improved performance compared to existing methods. We also show how the learned event representation can be directly visualized, providing insight into the inner workings of the model. These architectures lend themselves to efficiently processing and analyzing events for a wide variety of tasks at the Large Hadron Collider. Implementations and examples of our architectures are available online in our EnergyFlow package.

Keywords

Jets QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    CMS collaboration, The CMS particle flow algorithm, in Proceedings, International Conference on Calorimetry for the High Energy Frontier (CHEF 2013), Paris, France, 22–25 April 2013, pg. 295 [arXiv:1401.8155] [INSPIRE].
  2. [2]
    CMS collaboration, Particle-flow reconstruction and global event description with the CMS detector, 2017 JINST 12 P10003 [arXiv:1706.04965] [INSPIRE].
  3. [3]
    ATLAS collaboration, Jet reconstruction and performance using particle flow with the ATLAS Detector, Eur. Phys. J. C 77 (2017) 466 [arXiv:1703.10485] [INSPIRE].
  4. [4]
    J. Cogan, M. Kagan, E. Strauss and A. Schwarztman, Jet-images: computer vision inspired techniques for jet tagging, JHEP 02 (2015) 118 [arXiv:1407.5675] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    L. de Oliveira, M. Kagan, L. Mackey, B. Nachman and A. Schwartzman, Jet-images — deep learning edition, JHEP 07 (2016) 069 [arXiv:1511.05190] [INSPIRE].CrossRefGoogle Scholar
  6. [6]
    P. Baldi, K. Bauer, C. Eng, P. Sadowski and D. Whiteson, Jet substructure classification in high-energy physics with deep neural networks, Phys. Rev. D 93 (2016) 094034 [arXiv:1603.09349] [INSPIRE].ADSGoogle Scholar
  7. [7]
    J. Barnard, E.N. Dawe, M.J. Dolan and N. Rajcic, Parton shower uncertainties in jet substructure analyses with deep neural networks, Phys. Rev. D 95 (2017) 014018 [arXiv:1609.00607] [INSPIRE].ADSGoogle Scholar
  8. [8]
    P.T. Komiske, E.M. Metodiev and M.D. Schwartz, Deep learning in color: towards automated quark/gluon jet discrimination, JHEP 01 (2017) 110 [arXiv:1612.01551] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  9. [9]
    ATLAS collaboration, Quark versus gluon jet tagging using jet images with the ATLAS detector, ATL-PHYS-PUB-2017-017, CERN, Geneva, Switzerland (2017).
  10. [10]
    G. Kasieczka, T. Plehn, M. Russell and T. Schell, Deep-learning top taggers or the end of QCD?, JHEP 05 (2017) 006 [arXiv:1701.08784] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    W. Bhimji, S.A. Farrell, T. Kurth, M. Paganini, Prabhat and E. Racah, Deep neural networks for physics analysis on low-level whole-detector data at the LHC, J. Phys. Conf. Ser. 1085 (2018) 042034 [arXiv:1711.03573] [INSPIRE].
  12. [12]
    S. Macaluso and D. Shih, Pulling out all the tops with computer vision and deep learning, JHEP 10 (2018) 121 [arXiv:1803.00107] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J. Guo, J. Li, T. Li, F. Xu and W. Zhang, Deep learning for R-parity violating supersymmetry searches at the LHC, Phys. Rev. D 98 (2018) 076017 [arXiv:1805.10730] [INSPIRE].ADSGoogle Scholar
  14. [14]
    F.A. Dreyer, G.P. Salam and G. Soyez, The Lund jet plane, JHEP 12 (2018) 064 [arXiv:1807.04758] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    D. Guest, J. Collado, P. Baldi, S.-C. Hsu, G. Urban and D. Whiteson, Jet flavor classification in high-energy physics with deep neural networks, Phys. Rev. D 94 (2016) 112002 [arXiv:1607.08633] [INSPIRE].ADSGoogle Scholar
  16. [16]
    G. Louppe, K. Cho, C. Becot and K. Cranmer, QCD-aware recursive neural networks for jet physics, arXiv:1702.00748 [INSPIRE].
  17. [17]
    T. Cheng, Recursive neural networks in quark/gluon tagging, Comput. Softw. Big Sci. 2 (2018) 3 [arXiv:1711.02633] [INSPIRE].CrossRefGoogle Scholar
  18. [18]
    S. Egan, W. Fedorko, A. Lister, J. Pearkes and C. Gay, Long Short-Term Memory (LSTM) networks with jet constituents for boosted top tagging at the LHC, arXiv:1711.09059 [INSPIRE].
  19. [19]
    K. Fraser and M.D. Schwartz, Jet charge and machine learning, JHEP 10 (2018) 093 [arXiv:1803.08066] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    L.G. Almeida, M. Backović, M. Cliche, S.J. Lee and M. Perelstein, Playing tag with ANN: boosted top identification with pattern recognition, JHEP 07 (2015) 086 [arXiv:1501.05968] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Pearkes, W. Fedorko, A. Lister and C. Gay, Jet constituents for deep neural network based top quark tagging, arXiv:1704.02124 [INSPIRE].
  22. [22]
    A. Butter, G. Kasieczka, T. Plehn and M. Russell, Deep-learned top tagging with a Lorentz layer, SciPost Phys. 5 (2018) 028 [arXiv:1707.08966] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    T. Roxlo and M. Reece, Opening the black box of neural nets: case studies in stop/top discrimination, arXiv:1804.09278 [INSPIRE].
  24. [24]
    K. Datta and A. Larkoski, How much information is in a jet?, JHEP 06 (2017) 073 [arXiv:1704.08249] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J.A. Aguilar-Saavedra, J.H. Collins and R.K. Mishra, A generic anti-QCD jet tagger, JHEP 11 (2017) 163 [arXiv:1709.01087] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    H. Lüo, M.-X. Luo, K. Wang, T. Xu and G. Zhu, Quark jet versus gluon jet: deep neural networks with high-level features, arXiv:1712.03634 [INSPIRE].
  27. [27]
    L. Moore, K. Nordström, S. Varma and M. Fairbairn, Reports of my demise are greatly exaggerated: N-subjettiness taggers take on jet images, arXiv:1807.04769 [INSPIRE].
  28. [28]
    K. Datta and A.J. Larkoski, Novel jet observables from machine learning, JHEP 03 (2018) 086 [arXiv:1710.01305] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    P.T. Komiske, E.M. Metodiev and J. Thaler, Energy flow polynomials: a complete linear basis for jet substructure, JHEP 04 (2018) 013 [arXiv:1712.07124] [INSPIRE].CrossRefGoogle Scholar
  30. [30]
    P.T. Komiske, E.M. Metodiev, B. Nachman and M.D. Schwartz, Pileup mitigation with machine learning (PUMML), JHEP 12 (2017) 051 [arXiv:1707.08600] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J.H. Collins, K. Howe and B. Nachman, Anomaly detection for resonant new physics with machine learning, Phys. Rev. Lett. 121 (2018) 241803 [arXiv:1805.02664] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    R.T. D’Agnolo and A. Wulzer, Learning new physics from a machine, arXiv:1806.02350 [INSPIRE].
  33. [33]
    A. De Simone and T. Jacques, Guiding new physics searches with unsupervised learning, arXiv:1807.06038 [INSPIRE].
  34. [34]
    J. Hajer, Y.-Y. Li, T. Liu and H. Wang, Novelty detection meets collider physics, arXiv:1807.10261 [INSPIRE].
  35. [35]
    M. Farina, Y. Nakai and D. Shih, Searching for new physics with deep autoencoders, arXiv:1808.08992 [INSPIRE].
  36. [36]
    T. Heimel, G. Kasieczka, T. Plehn and J.M. Thompson, QCD or what?, arXiv:1808.08979 [INSPIRE].
  37. [37]
    J. Brehmer, K. Cranmer, G. Louppe and J. Pavez, Constraining effective field theories with machine learning, Phys. Rev. Lett. 121 (2018) 111801 [arXiv:1805.00013] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J. Brehmer, K. Cranmer, G. Louppe and J. Pavez, A guide to constraining effective field theories with machine learning, Phys. Rev. D 98 (2018) 052004 [arXiv:1805.00020] [INSPIRE].ADSGoogle Scholar
  39. [39]
    J. D’Hondt, A. Mariotti, K. Mimasu, S. Moortgat and C. Zhang, Learning to pinpoint effective operators at the LHC: a study of the \( t\overline{t}b\overline{b} \) signature, JHEP 11 (2018) 131 [arXiv:1807.02130] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    L. de Oliveira, M. Paganini and B. Nachman, Learning particle physics by example: location-aware generative adversarial networks for physics synthesis, Comput. Softw. Big Sci. 1 (2017) 4 [arXiv:1701.05927] [INSPIRE].CrossRefGoogle Scholar
  41. [41]
    M. Paganini, L. de Oliveira and B. Nachman, Accelerating science with generative adversarial networks: an application to 3D particle showers in multilayer calorimeters, Phys. Rev. Lett. 120 (2018) 042003 [arXiv:1705.02355] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    L. de Oliveira, M. Paganini and B. Nachman, Controlling physical attributes in GAN-accelerated simulation of electromagnetic calorimeters, in 18th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2017), Seattle, WA, U.S.A., 21–25 August 2017 [J. Phys. Conf. Ser. 1085 (2018) 042017] [arXiv:1711.08813] [INSPIRE].
  43. [43]
    M. Paganini, L. de Oliveira and B. Nachman, CaloGAN: simulating 3D high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks, Phys. Rev. D 97 (2018) 014021 [arXiv:1712.10321] [INSPIRE].ADSGoogle Scholar
  44. [44]
    A. Andreassen, I. Feige, C. Frye and M.D. Schwartz, JUNIPR: a framework for unsupervised machine learning in particle physics, arXiv:1804.09720 [INSPIRE].
  45. [45]
    P. Baldi, P. Sadowski and D. Whiteson, Searching for exotic particles in high-energy physics with deep learning, Nature Commun. 5 (2014) 4308 [arXiv:1402.4735] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    P. Baldi, P. Sadowski and D. Whiteson, Enhanced Higgs boson to τ + τ search with deep learning, Phys. Rev. Lett. 114 (2015) 111801 [arXiv:1410.3469] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J. Searcy, L. Huang, M.-A. Pleier and J. Zhu, Determination of the WW polarization fractions in ppW ± W ± jj using a deep machine learning technique, Phys. Rev. D 93 (2016) 094033 [arXiv:1510.01691] [INSPIRE].ADSGoogle Scholar
  48. [48]
    R. Santos et al., Machine learning techniques in searches for \( t\overline{t}h \) in the \( h\to b\overline{b} \) decay channel, 2017 JINST 12 P04014 [arXiv:1610.03088] [INSPIRE].
  49. [49]
    E. Barberio, B. Le, E. Richter-Was, Z. Was, D. Zanzi and J. Zaremba, Deep learning approach to the Higgs boson CP measurement in Hττ decay and associated systematics, Phys. Rev. D 96 (2017) 073002 [arXiv:1706.07983] [INSPIRE].ADSGoogle Scholar
  50. [50]
    J. Duarte et al., Fast inference of deep neural networks in FPGAs for particle physics, 2018 JINST 13 P07027 [arXiv:1804.06913] [INSPIRE].
  51. [51]
    M. Abdughani, J. Ren, L. Wu and J.M. Yang, Probing stop with graph neural network at the LHC, arXiv:1807.09088 [INSPIRE].
  52. [52]
    J. Lin, M. Freytsis, I. Moult and B. Nachman, Boosting \( H\to b\overline{b} \) with machine learning, JHEP 10 (2018) 101 [arXiv:1807.10768] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    Y.S. Lai, Automated discovery of jet substructure analyses, arXiv:1810.00835 [INSPIRE].
  54. [54]
    A.J. Larkoski, I. Moult and B. Nachman, Jet substructure at the Large Hadron Collider: a review of recent advances in theory and machine learning, arXiv:1709.04464 [INSPIRE].
  55. [55]
    D. Guest, K. Cranmer and D. Whiteson, Deep learning and its application to LHC physics, Ann. Rev. Nucl. Part. Sci. 68 (2018) 161 [arXiv:1806.11484] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    K. Albertsson et al., Machine learning in high energy physics community white paper, J. Phys. Conf. Ser. 1085 (2018) 022008 [arXiv:1807.02876] [INSPIRE].CrossRefGoogle Scholar
  57. [57]
    A. Radovic et al., Machine learning at the energy and intensity frontiers of particle physics, Nature 560 (2018) 41 [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    P. Sadowski and P. Baldi, Deep learning in the natural sciences: applications to physics, Springer International Publishing, Cham, Switzerland (2018), pg. 269.Google Scholar
  59. [59]
    M. Iyyer, V. Manjunatha, J.L. Boyd-Graber and H. Daumé III, Deep unordered composition rivals syntactic methods for text classification, in Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, ACL 2015, Beijing, China, 26–31 July 2015, pg. 1681.Google Scholar
  60. [60]
    R.Q. Charles, H. Su, M. Kaichun and L.J. Guibas, PointNet: deep learning on point sets for 3d classification and segmentation, in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Honolulu, HI, U.S.A., 21–26 July 2017, pg. 77.Google Scholar
  61. [61]
    S.H. Rezatofighi, B.G.V. Kumar, A. Milan, E. Abbasnejad, A. Dick and I. Reid, DeepSetNet: predicting sets with deep neural networks, in 2017 IEEE International Conference on Computer Vision (ICCV), IEEE, Venice, Italy, 22–29 October 2017, pg. 5257.Google Scholar
  62. [62]
    C.R. Qi, L. Yi, H. Su and L.J. Guibas, Pointnet++: deep hierarchical feature learning on point sets in a metric space, in Advances in Neural Information Processing Systems 30: annual conference on neural information processing systems 2017, Long Beach, CA, U.S.A., 4–9 December 2017, pg. 5105 [arXiv:1706.02413].
  63. [63]
    M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Póczos, R.R. Salakhutdinov and A.J. Smola, Deep sets, in Advances in Neural Information Processing Systems 30: annual conference on neural information processing systems 2017, Long Beach, CA, U.S.A., 4–9 December 2017, pg. 3394 [arXiv:1703.06114].
  64. [64]
    A. Gardner, J. Kanno, C.A. Duncan and R.R. Selmic, Classifying unordered feature sets with convolutional deep averaging networks, arXiv:1709.03019.
  65. [65]
    Y. Yang, C. Feng, Y. Shen and D. Tian, Foldingnet: interpretable unsupervised learning on 3d point clouds, arXiv:1712.07262.
  66. [66]
    S.H. Rezatofighi, A. Milan, Q. Shi, A.R. Dick and I.D. Reid, Joint learning of set cardinality and state distribution, in Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, U.S.A., 2–7 February 2018 [arXiv:1709.04093].
  67. [67]
    S.H. Rezatofighi et al., Deep perm-set net: learn to predict sets with unknown permutation and cardinality using deep neural networks, arXiv:1805.00613.
  68. [68]
    A. Cotter et al., Interpretable set functions, arXiv:1806.00050.
  69. [69]
    J. Pumplin, How to tell quark jets from gluon jets, Phys. Rev. D 44 (1991) 2025 [INSPIRE].ADSGoogle Scholar
  70. [70]
    J. Thaler and K. Van Tilburg, Identifying boosted objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    J. Thaler and K. Van Tilburg, Maximizing boosted top identification by minimizing N-subjettiness, JHEP 02 (2012) 093 [arXiv:1108.2701] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    D. Krohn, M.D. Schwartz, T. Lin and W.J. Waalewijn, Jet charge at the LHC, Phys. Rev. Lett. 110 (2013) 212001 [arXiv:1209.2421] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    H.-M. Chang, M. Procura, J. Thaler and W.J. Waalewijn, Calculating track-based observables for the LHC, Phys. Rev. Lett. 111 (2013) 102002 [arXiv:1303.6637] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    A.J. Larkoski, J. Thaler and W.J. Waalewijn, Gaining (mutual) information about quark/gluon discrimination, JHEP 11 (2014) 129 [arXiv:1408.3122] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    A.J. Larkoski, G.P. Salam and J. Thaler, Energy correlation functions for jet substructure, JHEP 06 (2013) 108 [arXiv:1305.0007] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  76. [76]
    I. Moult, L. Necib and J. Thaler, New angles on energy correlation functions, JHEP 12 (2016) 153 [arXiv:1609.07483] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    C. Frye, A.J. Larkoski, J. Thaler and K. Zhou, Casimir meets Poisson: improved quark/gluon discrimination with counting observables, JHEP 09 (2017) 083 [arXiv:1704.06266] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    A. Abdesselam et al., Boosted objects: a probe of beyond the Standard Model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    A. Altheimer et al., Jet substructure at the Tevatron and LHC: new results, new tools, new benchmarks, J. Phys. G 39 (2012) 063001 [arXiv:1201.0008] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    A. Altheimer et al., Boosted objects and jet substructure at the LHC. Report of BOOST2012, held at IFIC Valencia, 2327 July 2012, Eur. Phys. J. C 74 (2014) 2792 [arXiv:1311.2708] [INSPIRE].
  82. [82]
    D. Adams et al., Towards an understanding of the correlations in jet substructure, Eur. Phys. J. C 75 (2015) 409 [arXiv:1504.00679] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    L. Asquith et al., Jet substructure at the Large Hadron Collider: experimental review, arXiv:1803.06991 [INSPIRE].
  84. [84]
    J. Gallicchio and M.D. Schwartz, Quark and gluon tagging at the LHC, Phys. Rev. Lett. 107 (2011) 172001 [arXiv:1106.3076] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    J. Gallicchio and M.D. Schwartz, Quark and gluon jet substructure, JHEP 04 (2013) 090 [arXiv:1211.7038] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    ATLAS collaboration, Light-quark and gluon jet discrimination in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Eur. Phys. J. C 74 (2014) 3023 [arXiv:1405.6583] [INSPIRE].
  87. [87]
    P. Gras et al., Systematics of quark/gluon tagging, JHEP 07 (2017) 091 [arXiv:1704.03878] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    E.M. Metodiev, B. Nachman and J. Thaler, Classification without labels: learning from mixed samples in high energy physics, JHEP 10 (2017) 174 [arXiv:1708.02949] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    P.T. Komiske, E.M. Metodiev, B. Nachman and M.D. Schwartz, Learning to classify from impure samples with high-dimensional data, Phys. Rev. D 98 (2018) 011502 [arXiv:1801.10158] [INSPIRE].ADSGoogle Scholar
  90. [90]
    P.T. Komiske, E.M. Metodiev and J. Thaler, An operational definition of quark and gluon jets, JHEP 11 (2018) 059 [arXiv:1809.01140] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    EnergyFlow webpage, https://energyflow.network.
  92. [92]
    M.H. Stone, The generalized Weierstrass approximation theorem, Math. Magazine 21 (1948) 237.MathSciNetCrossRefGoogle Scholar
  93. [93]
    CMS collaboration, Performance of quark/gluon discrimination in 8 TeV pp data, CMS-PAS-JME-13-002, CERN, Geneva, Switzerland (2013).
  94. [94]
    G. Parisi, Super inclusive cross-sections, Phys. Lett. B 74 (1978) 65 [INSPIRE].ADSGoogle Scholar
  95. [95]
    T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys. 3 (1962) 650 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  96. [96]
    T.D. Lee and M. Nauenberg, Degenerate systems and mass singularities, Phys. Rev. 133 (1964) B1549 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  97. [97]
    CTEQ collaboration, Handbook of perturbative QCD: version 1.0, Rev. Mod. Phys. 67 (1995) 157 [INSPIRE].
  98. [98]
    S. Weinberg, The quantum theory of fields. Volume 1: foundations, Cambridge University Press, Cambridge, U.K. (2005) [INSPIRE].
  99. [99]
    A.J. Larkoski and J. Thaler, Unsafe but calculable: ratios of angularities in perturbative QCD, JHEP 09 (2013) 137 [arXiv:1307.1699] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    A.J. Larkoski, S. Marzani and J. Thaler, Sudakov safety in perturbative QCD, Phys. Rev. D 91 (2015) 111501 [arXiv:1502.01719] [INSPIRE].ADSGoogle Scholar
  101. [101]
    F.V. Tkachov, Measuring multi-jet structure of hadronic energy flow or what is a jet?, Int. J. Mod. Phys. A 12 (1997) 5411 [hep-ph/9601308] [INSPIRE].
  102. [102]
    N.A. Sveshnikov and F.V. Tkachov, Jets and quantum field theory, Phys. Lett. B 382 (1996) 403 [hep-ph/9512370] [INSPIRE].
  103. [103]
    P.S. Cherzor and N.A. Sveshnikov, Jet observables and energy momentum tensor, in Quantum field theory and high-energy physics. Proceedings, Workshop, QFTHEP 97, Samara, Russia, 4–10 September 1997, pg. 402 [hep-ph/9710349] [INSPIRE].
  104. [104]
    G.C. Fox and S. Wolfram, Observables for the analysis of event shapes in e + e annihilation and other processes, Phys. Rev. Lett. 41 (1978) 1581 [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    J.F. Donoghue, F.E. Low and S.-Y. Pi, Tensor analysis of hadronic jets in quantum chromodynamics, Phys. Rev. D 20 (1979) 2759 [INSPIRE].ADSGoogle Scholar
  106. [106]
    G. Gur-Ari, M. Papucci and G. Perez, Classification of energy flow observables in narrow jets, arXiv:1101.2905 [INSPIRE].
  107. [107]
    Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  108. [108]
    V. Nair and G.E. Hinton, Rectified linear units improve restricted Boltzmann machines, in Proceedings of the 27th International Conference on Machine Learning (ICML-10), Haifa, Israel (2010), pg. 807.Google Scholar
  109. [109]
    K. He, X. Zhang, S. Ren and J. Sun, Delving deep into rectifiers: surpassing human-level performance on ImageNet classification, in 2015 IEEE International Conference on Computer Vision (ICCV), IEEE, Santiago, Chile (2015), pg. 1026.Google Scholar
  110. [110]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  111. [111]
    T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  112. [112]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  113. [113]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  114. [114]
    L.M. Dery, B. Nachman, F. Rubbo and A. Schwartzman, Weakly supervised classification in high energy physics, JHEP 05 (2017) 145 [arXiv:1702.00414] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  115. [115]
    T. Cohen, M. Freytsis and B. Ostdiek, (Machine) learning to do more with less, JHEP 02 (2018) 034 [arXiv:1706.09451] [INSPIRE].
  116. [116]
    G. Blanchard, M. Flaska, G. Handy, S. Pozzi and C. Scott, Classification with asymmetric label noise: consistency and maximal denoising, Electron. J. Statist. 10 (2016) 2780 [Corrigendum ibid. 12 (2018) 1779] [arXiv:1303.1208].
  117. [117]
    E.M. Metodiev and J. Thaler, Jet topics: disentangling quarks and gluons at colliders, Phys. Rev. Lett. 120 (2018) 241602 [arXiv:1802.00008] [INSPIRE].ADSCrossRefGoogle Scholar
  118. [118]
    A.J. Larkoski, D. Neill and J. Thaler, Jet shapes with the broadening axis, JHEP 04 (2014) 017 [arXiv:1401.2158] [INSPIRE].ADSCrossRefGoogle Scholar
  119. [119]
    T. Likhomanenko, P. Ilten, E. Khairullin, A. Rogozhnikov, A. Ustyuzhanin and M. Williams, LHCb topological trigger reoptimization, J. Phys. Conf. Ser. 664 (2015) 082025 [arXiv:1510.00572] [INSPIRE].CrossRefGoogle Scholar
  120. [120]
    F. Pedregosa et al., Scikit-learn: machine learning in python, J. Machine Learn. Res. 12 (2011) 2825.MathSciNetzbMATHGoogle Scholar
  121. [121]
    A.J. Larkoski, I. Moult and D. Neill, Toward multi-differential cross sections: measuring two angularities on a single jet, JHEP 09 (2014) 046 [arXiv:1401.4458] [INSPIRE].ADSCrossRefGoogle Scholar
  122. [122]
    M. Procura, W.J. Waalewijn and L. Zeune, Joint resummation of two angularities at next-to-next-to-leading logarithmic order, JHEP 10 (2018) 098 [arXiv:1806.10622] [INSPIRE].ADSCrossRefGoogle Scholar
  123. [123]
    D. Bertolini, P. Harris, M. Low and N. Tran, Pileup per particle identification, JHEP 10 (2014) 059 [arXiv:1407.6013] [INSPIRE].ADSCrossRefGoogle Scholar
  124. [124]
    Fastjet contrib webpage, https://fastjet.hepforge.org/contrib/.
  125. [125]
    F. Chollet, Keras, https://github.com/fchollet/keras, (2015).
  126. [126]
    M. Abadi et al., Tensorflow: a system for large-scale machine learning, in Proceedings OSDI, volume 16, (2016), pg. 265 [arXiv:1605.08695].
  127. [127]
    T. Oliphant, Guide to NumPy, Trelgol Publishing, U.S.A. (2006).Google Scholar
  128. [128]
    D.P. Kingma and J. Ba, Adam: a method for stochastic optimization, arXiv:1412.6980 [INSPIRE].
  129. [129]
    DELPHES 3 collaboration, DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.
  2. 2.Department of PhysicsHarvard UniversityCambridgeU.S.A.

Personalised recommendations