Advertisement

Journal of High Energy Physics

, 2019:118 | Cite as

Sub-eikonal corrections to scattering amplitudes at high energy

  • Giovanni Antonio ChirilliEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

Most of the progress in high-energy Quantum Chromodynamics has been obtained within the eikonal approximation and infinite Wilson-line operators. Evolution equations of Wilson lines with respect to the rapidity parameter encode the dynamics of the hadronic processes at high energy. However, even at high energy many interesting aspects of hadron dynamics are not accessible within the eikonal approximation, the spin physics being an obvious example. The higher precision reached by the experiments and the possibility to probe spin dynamics at future Electron Ion Colliders make the study of deviations from eikonal approximation especially timely. In this paper, I derive the sub-eikonal quark and gluon propagators which can serve as a starting point of studies of these effects.

Keywords

Perturbative QCD Resummation Scattering Amplitudes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    I. Balitsky, High-energy QCD and Wilson lines, hep-ph/0101042 [INSPIRE].
  2. [2]
    I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B 463 (1996) 99 [hep-ph/9509348] [INSPIRE].
  3. [3]
    J. Jalilian-Marian, A. Kovner and H. Weigert, The Wilson renormalization group for low x physics: Gluon evolution at finite parton density, Phys. Rev. D 59 (1998) 014015 [hep-ph/9709432] [INSPIRE].
  4. [4]
    J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The Wilson renormalization group for low x physics: Towards the high density regime, Phys. Rev. D 59 (1998) 014014 [hep-ph/9706377] [INSPIRE].
  5. [5]
    E. Iancu, A. Leonidov and L.D. McLerran, The Renormalization group equation for the color glass condensate, Phys. Lett. B 510 (2001) 133 [hep-ph/0102009] [INSPIRE].
  6. [6]
    E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. 1., Nucl. Phys. A 692 (2001) 583 [hep-ph/0011241] [INSPIRE].
  7. [7]
    Y.V. Kovchegov, Small-x F 2 structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev. D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].
  8. [8]
    Y.V. Kovchegov, Unitarization of the BFKL Pomeron on a nucleus, Phys. Rev. D 61 (2000) 074018 [hep-ph/9905214] [INSPIRE].
  9. [9]
    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk Singularity in Nonabelian Gauge Theories, Sov. Phys. JETP 45 (1977) 199 [INSPIRE].
  10. [10]
    I.I. Balitsky and L.N. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [INSPIRE].Google Scholar
  11. [11]
    Y.V. Kovchegov and E. Levin, Quantum chromodynamics at high energy, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 33 (2012) [INSPIRE].
  12. [12]
    I. Balitsky and G.A. Chirilli, High-energy amplitudes in N = 4 SYM in the next-to-leading order, Phys. Lett. B 687 (2010) 204 [arXiv:0911.5192] [INSPIRE].
  13. [13]
    I. Balitsky and G.A. Chirilli, Photon impact factor in the next-to-leading order, Phys. Rev. D 83 (2011) 031502 [arXiv:1009.4729] [INSPIRE].
  14. [14]
    I. Balitsky and G.A. Chirilli, Photon impact factor and k T -factorization for DIS in the next-to-leading order, Phys. Rev. D 87 (2013) 014013 [arXiv:1207.3844] [INSPIRE].
  15. [15]
    G.A. Chirilli, B.-W. Xiao and F. Yuan, One-loop Factorization for Inclusive Hadron Production in pA Collisions in the Saturation Formalism, Phys. Rev. Lett. 108 (2012) 122301 [arXiv:1112.1061] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    G.A. Chirilli, B.-W. Xiao and F. Yuan, Inclusive Hadron Productions in pA Collisions, Phys. Rev. D 86 (2012) 054005 [arXiv:1203.6139] [INSPIRE].
  17. [17]
    G.A. Chirilli and Y.V. Kovchegov, γ γ Cross Section at NLO and Properties of the BFKL Evolution at Higher Orders, JHEP 05 (2014) 099 [Erratum ibid. 08 (2015) 075] [arXiv:1403.3384] [INSPIRE].
  18. [18]
    D. Boer et al., Gluons and the quark sea at high energies: Distributions, polarization, tomography, arXiv:1108.1713 [INSPIRE].
  19. [19]
    A. Accardi et al., Electron Ion Collider: The Next QCD Frontier. Understanding the glue that binds us all, Eur. Phys. J. A 52 (2016) 268 [arXiv:1212.1701] [INSPIRE].
  20. [20]
    E.C. Aschenauer, R. Sassot and M. Stratmann, Unveiling the Proton Spin Decomposition at a Future Electron-Ion Collider, Phys. Rev. D 92 (2015) 094030 [arXiv:1509.06489] [INSPIRE].
  21. [21]
    J.D. Bjorken, J.B. Kogut and D.E. Soper, Quantum Electrodynamics at Infinite Momentum: Scattering from an External Field, Phys. Rev. D 3 (1971) 1382 [INSPIRE].
  22. [22]
    G. ’t Hooft, Graviton Dominance in Ultrahigh-Energy Scattering, Phys. Lett. B 198 (1987) 61 [INSPIRE].
  23. [23]
    J.C. Collins, D.E. Soper and G.F. Sterman, Heavy Particle Production in High-Energy Hadron Collisions, Nucl. Phys. B 263 (1986) 37 [INSPIRE].
  24. [24]
    H. Cheng and T.T. Wu, Expanding Protons: Scattering At High-energies, Cambridge, U.S.A., MIT-PR. (1987) [INSPIRE].
  25. [25]
    O. Nachtmann, Considerations concerning diffraction scattering in quantum chromodynamics, Annals Phys. 209 (1991) 436 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    I. Balitsky and A. Tarasov, Rapidity evolution of gluon TMD from low to moderate x, JHEP 10 (2015) 017 [arXiv:1505.02151] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    I. Balitsky and A. Tarasov, Gluon TMD in particle production from low to moderate x, JHEP 06 (2016) 164 [arXiv:1603.06548] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    Y.V. Kovchegov, D. Pitonyak and M.D. Sievert, Helicity Evolution at Small-x, JHEP 01 (2016) 072 [Erratum ibid. 10 (2016) 148] [arXiv:1511.06737] [INSPIRE].
  29. [29]
    Y.V. Kovchegov, D. Pitonyak and M.D. Sievert, Helicity Evolution at Small x: Flavor Singlet and Non-Singlet Observables, Phys. Rev. D 95 (2017) 014033 [arXiv:1610.06197] [INSPIRE].
  30. [30]
    Y.V. Kovchegov, D. Pitonyak and M.D. Sievert, Small-x Asymptotics of the Quark Helicity Distribution: Analytic Results, Phys. Lett. B 772 (2017) 136 [arXiv:1703.05809] [INSPIRE].
  31. [31]
    Y.V. Kovchegov, D. Pitonyak and M.D. Sievert, Small-x Asymptotics of the Gluon Helicity Distribution, JHEP 10 (2017) 198 [arXiv:1706.04236] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    J. Bartels, B.I. Ermolaev and M.G. Ryskin, Nonsinglet contributions to the structure function g1 at small x, Z. Phys. C 70 (1996) 273 [hep-ph/9507271] [INSPIRE].
  33. [33]
    J. Bartels, B.I. Ermolaev and M.G. Ryskin, Flavor singlet contribution to the structure function g 1 at small x, Z. Phys. C 72 (1996) 627 [hep-ph/9603204] [INSPIRE].
  34. [34]
    V.G. Gorshkov, V.N. Gribov, L.N. Lipatov and G.V. Frolov, Doubly logarithmic asymptotic behavior in quantum electrodynamics, Sov. J. Nucl. Phys. 6 (1968) 95 [INSPIRE].Google Scholar
  35. [35]
    T. Altinoluk, N. Armesto, G. Beuf, M. Martínez and C.A. Salgado, Next-to-eikonal corrections in the CGC: gluon production and spin asymmetries in pA collisions, JHEP 07 (2014) 068 [arXiv:1404.2219] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    E. Laenen, G. Stavenga and C.D. White, Path integral approach to eikonal and next-to-eikonal exponentiation, JHEP 03 (2009) 054 [arXiv:0811.2067] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    E. Laenen, L. Magnea and G. Stavenga, On next-to-eikonal corrections to threshold resummation for the Drell-Yan and DIS cross sections, Phys. Lett. B 669 (2008) 173 [arXiv:0807.4412] [INSPIRE].
  38. [38]
    E. Laenen, L. Magnea, G. Stavenga and C.D. White, Next-to-eikonal corrections to soft gluon radiation: a diagrammatic approach, JHEP 01 (2011) 141 [arXiv:1010.1860] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  39. [39]
    G.A. Chirilli, Y.V. Kovchegov and D.E. Wertepny, Regularization of the Light-Cone Gauge Gluon Propagator Singularities Using Sub-Gauge Conditions, JHEP 12 (2015) 138 [arXiv:1508.07962] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  40. [40]
    I.I. Balitsky and V.M. Braun, Evolution Equations for QCD String Operators, Nucl. Phys. B 311 (1989) 541 [INSPIRE].
  41. [41]
    V.M. Braun, G.P. Korchemsky and A.N. Manashov, Evolution of twist - three parton distributions in QCD beyond the large N c limit, Phys. Lett. B 476 (2000) 455 [hep-ph/0001130] [INSPIRE].
  42. [42]
    V.M. Braun, A.N. Manashov and J. Rohrwild, Baryon Operators of Higher Twist in QCD and Nucleon Distribution Amplitudes, Nucl. Phys. B 807 (2009) 89 [arXiv:0806.2531] [INSPIRE].
  43. [43]
    V.M. Braun, A.N. Manashov and B. Pirnay, Scale dependence of twist-three contributions to single spin asymmetries, Phys. Rev. D 80 (2009) 114002 [Erratum ibid. D 86 (2012) 119902] [arXiv:0909.3410] [INSPIRE].
  44. [44]
    V.M. Braun, Y. Ji and A.N. Manashov, Higher-twist B-meson Distribution Amplitudes in HQET, JHEP 05 (2017) 022 [arXiv:1703.02446] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J.C. Collins, Foundations of Perturbative QCD, Cambridge University Press, Cambridge U.K. (2011) [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikUniversität RegensburgRegensburgGermany

Personalised recommendations