Advertisement

Journal of High Energy Physics

, 2019:116 | Cite as

AdS6 T-duals and type IIB AdS6 × S2 geometries with 7-branes

  • Yolanda Lozano
  • Niall T. Macpherson
  • Jesús MonteroEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We show that the first AdS6 backgrounds in Type IIB supergravity known in the literature, namely those constructed via T-duality from the Brandhuber-Oz solution to massive IIA, fit within an extension of the global AdS6 × S2 solutions with 7-branes warped over a Riemann surface Σ, recently classified by D’Hoker, Gutperle and Uhlemann [1, 2], that describes delocalised 5-branes and 7-branes. The solution constructed through Abelian T-duality provides an explicit example of a Riemann surface with the topology of an annulus, that includes D7/O7-branes. In turn, the solution generated through non-Abelian T-duality arises from the upper half-plane.

Keywords

AdS-CFT Correspondence String Duality 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. D’Hoker, M. Gutperle and C.F. Uhlemann, Warped AdS 6 × S 2 in Type IIB supergravity II: global solutions and five-brane webs, JHEP 05 (2017) 131 [arXiv:1703.08186] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  2. [2]
    E. D’Hoker, M. Gutperle and C.F. Uhlemann, Warped AdS 6 × S 2 in Type IIB supergravity III: global solutions with seven-branes, JHEP 11 (2017) 200 [arXiv:1706.00433] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    E. D’Hoker, M. Gutperle, A. Karch and C.F. Uhlemann, Warped AdS 6 × S 2 in Type IIB supergravity I: local solutions, JHEP 08 (2016) 046 [arXiv:1606.01254] [INSPIRE].CrossRefzbMATHGoogle Scholar
  4. [4]
    E. D’Hoker, M. Gutperle and C.F. Uhlemann, Holographic duals for five-dimensional superconformal quantum field theories, Phys. Rev. Lett. 118 (2017) 101601 [arXiv:1611.09411] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    M. Gutperle, C. Marasinou, A. Trivella and C.F. Uhlemann, Entanglement entropy vs. free energy in IIB supergravity duals for 5d SCFTs, JHEP 09 (2017) 125 [arXiv:1705.01561] [INSPIRE].
  6. [6]
    M. Gutperle, A. Trivella and C.F. Uhlemann, Type IIB 7-branes in warped AdS 6 : partition functions, brane webs and probe limit, JHEP 04 (2018) 135 [arXiv:1802.07274] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56 [hep-th/9702198] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    P. Jefferson, H.-C. Kim, C. Vafa and G. Zafrir, Towards classification of 5d SCFTs: single gauge node, arXiv:1705.05836 [INSPIRE].
  10. [10]
    A. Brandhuber and Y. Oz, The D4-D8 brane system and five-dimensional fixed points, Phys. Lett. B 460 (1999) 307 [hep-th/9905148] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    O. Bergman and D. Rodriguez-Gomez, 5d quivers and their AdS 6 duals, JHEP 07 (2012) 171 [arXiv:1206.3503] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    J. Gutowski and G. Papadopoulos, On supersymmetric AdS 6 solutions in 10 and 11 dimensions, JHEP 12 (2017) 009 [arXiv:1702.06048] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  13. [13]
    A. Passias, A note on supersymmetric AdS 6 solutions of massive type IIA supergravity, JHEP 01 (2013) 113 [arXiv:1209.3267] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Y. Lozano, E. Ó Colgáin, D. Rodríguez-Gómez and K. Sfetsos, Supersymmetric AdS 6 via T duality, Phys. Rev. Lett. 110 (2013) 231601 [arXiv:1212.1043] [INSPIRE].
  15. [15]
    K. Sfetsos and D.C. Thompson, On non-abelian T-dual geometries with Ramond fluxes, Nucl. Phys. B 846 (2011) 21 [arXiv:1012.1320] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    X.C. de la Ossa and F. Quevedo, Duality symmetries from non-Abelian isometries in string theory, Nucl. Phys. B 403 (1993) 377 [hep-th/9210021] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    G. Itsios, C. Núñez, K. Sfetsos and D.C. Thompson, On non-Abelian T-duality and new N =1 backgrounds, Phys. Lett. B 721 (2013) 342 [arXiv:1212.4840] [INSPIRE].
  18. [18]
    G. Itsios, C. Núñez, K. Sfetsos and D.C. Thompson, Non-Abelian T-duality and the AdS/CFT correspondence: new N = 1 backgrounds, Nucl. Phys. B 873 (2013) 1 [arXiv:1301.6755] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    Y. Lozano, E. O Colgain, K. Sfetsos and D.C. Thompson, Non-abelian T-duality, Ramond fields and coset geometries, JHEP 06 (2011) 106 [arXiv:1104.5196] [INSPIRE].
  20. [20]
    G. Itsios, Y. Lozano, E. O Colgain and K. Sfetsos, Non-Abelian T-duality and consistent truncations in type-II supergravity, JHEP 08 (2012) 132 [arXiv:1205.2274] [INSPIRE].
  21. [21]
    A. Barranco et al., G-structures and flavouring non-Abelian T-duality, JHEP 08 (2013) 018 [arXiv:1305.7229] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    N.T. Macpherson, Non-Abelian T-duality, G 2 -structure rotation and holographic duals of N = 1 Chern-Simons theories, JHEP 11 (2013) 137 [arXiv:1310.1609] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    J. Jeong, O. Kelekci and E. Ó Colgain, An alternative IIB embedding of F(4) gauged supergravity, JHEP 05 (2013) 079 [arXiv:1302.2105] [INSPIRE].
  24. [24]
    Y. Lozano, E. Ó Colgáin and D. Rodríguez-Gómez, Hints of 5d fixed point theories from non-Abelian T-duality, JHEP 05 (2014) 009 [arXiv:1311.4842] [INSPIRE].
  25. [25]
    J. Gaillard, N.T. Macpherson, C. Núñez and D.C. Thompson, Dualising the baryonic branch: dynamic SU(2) and confining backgrounds in IIA, Nucl. Phys. B 884 (2014) 696 [arXiv:1312.4945] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    D. Elander, A.F. Faedo, C. Hoyos, D. Mateos and M. Piai, Multiscale confining dynamics from holographic RG flows, JHEP 05 (2014) 003 [arXiv:1312.7160] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S. Zacarías, Semiclassical strings and non-Abelian T-duality, Phys. Lett. B 737 (2014) 90 [arXiv:1401.7618] [INSPIRE].
  28. [28]
    E. Caceres, N.T. Macpherson and C. Núñez, New type IIB backgrounds and aspects of their field theory duals, JHEP 08 (2014) 107 [arXiv:1402.3294] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    P.M. Pradhan, Oscillating strings and non-Abelian T-dual Klebanov-Witten background, Phys. Rev. D 90 (2014) 046003 [arXiv:1406.2152] [INSPIRE].ADSGoogle Scholar
  30. [30]
    Y. Lozano and N.T. Macpherson, A new AdS 4 /CFT 3 dual with extended SUSY and a spectral flow, JHEP 11 (2014) 115 [arXiv:1408.0912] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    K. Sfetsos and D.C. Thompson, New \( \mathcal{N} \) = 1 supersymmetric AdS 5 backgrounds in Type IIA supergravity, JHEP 11 (2014) 006 [arXiv:1408.6545] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    O. Kelekci, Y. Lozano, N.T. Macpherson and E. Ó Colgáin, Supersymmetry and non-Abelian T-duality in type-II supergravity, Class. Quant. Grav. 32 (2015) 035014 [arXiv:1409.7406] [INSPIRE].
  33. [33]
    N.T. Macpherson et al., Type IIB supergravity solutions with AdS 5 from Abelian and non-Abelian T dualities, JHEP 02 (2015) 040 [arXiv:1410.2650] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    K.S. Kooner and S. Zacarías, Non-abelian T-dualizing the resolved conifold with regular and fractional D3-branes, JHEP 08 (2015) 143 [arXiv:1411.7433] [INSPIRE].
  35. [35]
    T.R. Araujo and H. Nastase, \( \mathcal{N} \) = 1 SUSY backgrounds with an AdS factor from non-Abelian T duality, Phys. Rev. D 91 (2015) 126015 [arXiv:1503.00553] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    Y. Bea et al., Compactifications of the Klebanov-Witten CFT and new AdS 3 backgrounds, JHEP 05 (2015) 062 [arXiv:1503.07527] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    Y. Lozano, N.T. Macpherson, J. Montero and E. Ó Colgáin, New AdS 3 × S 2 T-duals with \( \mathcal{N} \) = (0, 4) supersymmetry, JHEP 08 (2015) 121 [arXiv:1507.02659] [INSPIRE].
  38. [38]
    Y. Lozano, N.T. Macpherson and J. Montero, A \( \mathcal{N} \) = 2 supersymmetric AdS 4 solution in M-theory with purely magnetic flux, JHEP 10 (2015) 004 [arXiv:1507.02660] [INSPIRE].ADSzbMATHGoogle Scholar
  39. [39]
    T.R. Araujo and H. Nastase, Non-abelian T-duality for nonrelativistic holographic duals, JHEP 11 (2015) 203 [arXiv:1508.06568] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    N.T. Macpherson, C. Núñez, D.C. Thompson and S. Zacarias, Holographic flows in non-Abelian T-dual geometries, JHEP 11 (2015) 212 [arXiv:1509.04286] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    Y. Lozano and C. Núñez, Field theory aspects of non-Abelian T-duality and \( \mathcal{N} \) = 2 linear quivers, JHEP 05 (2016) 107 [arXiv:1603.04440] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    Y. Lozano, N.T. Macpherson, J. Montero and C. Núñez, Three-dimensional \( \mathcal{N} \) = 4 linear quivers and non-Abelian T-duals, JHEP 11 (2016) 133 [arXiv:1609.09061] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    Y. Lozano, C. Núñez and S. Zacarias, BMN vacua, superstars and non-Abelian T-duality, JHEP 09 (2017) 000 [arXiv:1703.00417] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  45. [45]
    G. Itsios, Y. Lozano, J. Montero and C. Núñez, The AdS 5 non-Abelian T-dual of Klebanov-Witten as a \( \mathcal{N} \) = 1 linear quiver from M5-branes, JHEP 09 (2017) 038 [arXiv:1705.09661] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    F. Apruzzi, M. Fazzi, A. Passias, D. Rosa and A. Tomasiello, AdS 6 solutions of type-II supergravity, JHEP 11 (2014) 099 [Erratum ibid. 05 (2015) 012] [arXiv:1406.0852] [INSPIRE].
  47. [47]
    H. Kim, N. Kim and M. Suh, Supersymmetric AdS 6 solutions of type IIB supergravity, Eur. Phys. J. C 75 (2015) 484 [arXiv:1506.05480] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    H. Kim and N. Kim, Comments on the symmetry of AdS 6 solutions in string/M-theory and Killing spinor equations, Phys. Lett. B 760 (2016) 780 [arXiv:1604.07987] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  49. [49]
    W. Nahm, Supersymmetries and their representations, Nucl. Phys. B 135 (1978) 149 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    N.T. Macpherson and A. Tomasiello, Minimal flux Minkowski classification, JHEP 09 (2017) 126 [arXiv:1612.06885] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    F. Apruzzi et al., Minkowski 4 × S 2 solutions of IIB supergravity, Fortsch. Phys. 66 (2018) 1800006 [arXiv:1801.00800] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  52. [52]
    L.J. Romans, The F(4) gauged supergravity in six-dimensions, Nucl. Phys. B 269 (1986) 691 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    J. Hong, J.T. Liu and D.R. Mayerson, Gauged six-dimensional supergravity from warped IIB reductions, JHEP 09 (2018) 140 [arXiv:1808.04301] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    E. Malek, H. Samtleben and V. Vall Camell, Supersymmetric AdS 7 and AdS 6 vacua and their minimal consistent truncations from exceptional field theory, Phys. Lett. B 786 (2018) 171 [arXiv:1808.05597] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  55. [55]
    O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl. Phys. B 504 (1997) 239 [hep-th/9704170] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    O. Aharony, A. Hanany and B. Kol, Webs of (p, q) five-branes, five-dimensional field theories and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    O. DeWolfe, A. Hanany, A. Iqbal and E. Katz, Five-branes, seven-branes and five-dimensional E(n) field theories, JHEP 03 (1999) 006 [hep-th/9902179] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    M. Fluder and C.F. Uhlemann, Precision test of AdS 6 /CFT 5 in Type IIB string theory, Phys. Rev. Lett. 121 (2018) 171603 [arXiv:1806.08374] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    O. Bergman, D. Rodríguez-Gómez and C.F. Uhlemann, Testing AdS 6 /CFT 5 in Type IIB with stringy operators, JHEP 08 (2018) 127 [arXiv:1806.07898] [INSPIRE].
  60. [60]
    A. Passias and P. Richmond, Perturbing AdS 6 ×w S 4 : linearised equations and spin-2 spectrum, JHEP 07 (2018) 058 [arXiv:1804.09728] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    M. Gutperle, C.F. Uhlemann and O. Varela, Massive spin 2 excitations in AdS 6 × S 2 warped spacetimes, JHEP 07 (2018) 091 [arXiv:1805.11914] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  62. [62]
    J. Kaidi, (p,q)-strings probing five-brane webs, JHEP 10 (2017) 087 [arXiv:1708.03404] [INSPIRE].
  63. [63]
    J. Kaidi and C.F. Uhlemann, M-theory curves from warped AdS 6 in Type IIB, JHEP 11 (2018) 175 [arXiv:1809.10162] [INSPIRE].
  64. [64]
    E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS Type IIB interface solutions. I. Local solution and supersymmetric Janus, JHEP 06 (2007) 021 [arXiv:0705.0022] [INSPIRE].
  65. [65]
    E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS Type IIB interface solutions. II. Flux solutions and multi-Janus, JHEP 06 (2007) 022 [arXiv:0705.0024] [INSPIRE].
  66. [66]
    M.B. Green, J.H. Schwarz and E. Witten, Superstring theory volume 2, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2012).Google Scholar
  67. [67]
    S. Ferrara, A. Kehagias, H. Partouche and A. Zaffaroni, AdS 6 interpretation of 5 − D superconformal field theories, Phys. Lett. B 431 (1998) 57 [hep-th/9804006] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    J. Borlaf and Y. Lozano, Aspects of T duality in open strings, Nucl. Phys. B 480 (1996) 239 [hep-th/9607051] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  69. [69]
    S. Driezen, A. Sevrin and D.C. Thompson, D-branes in λ-deformations, JHEP 09 (2018) 015 [arXiv:1806.10712] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  70. [70]
    D. Gaiotto and J. Maldacena, The gravity duals of N = 2 superconformal field theories, JHEP 10 (2012) 189 [arXiv:0904.4466] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  71. [71]
    B. Assel, C. Bachas, J. Estes and J. Gomis, Holographic duals of D = 3 N = 4 superconformal field theories, JHEP 08 (2011) 087 [arXiv:1106.4253] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl. Phys. B 796 (2008) 274 [arXiv:0709.2140] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  73. [73]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  74. [74]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  75. [75]
    D.L. Jafferis and S.S. Pufu, Exact results for five-dimensional superconformal field theories with gravity duals, JHEP 05 (2014) 032 [arXiv:1207.4359] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  76. [76]
    I. Brunner and A. Karch, Branes and six-dimensional fixed points, Phys. Lett. B 409 (1997) 109 [hep-th/9705022] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  77. [77]
    O. Bergman and G. Zafrir, 5D fixed points from brane webs and O7-planes, JHEP 12 (2015) 163 [arXiv:1507.03860] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  78. [78]
    D. Gaiotto and E. Witten, S-duality of boundary conditions in N = 4 super Yang-Mills theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  79. [79]
    O. Bergman, D. Rodríguez-Gómez and G. Zafrir, 5-brane webs, symmetry enhancement and duality in 5D supersymmetric gauge theory, JHEP 03 (2014) 112 [arXiv:1311.4199] [INSPIRE].
  80. [80]
    D. Gaiotto and A. Tomasiello, Holography for (1, 0) theories in six dimensions, JHEP 12 (2014) 003 [arXiv:1404.0711] [INSPIRE].
  81. [81]
    S. Cremonesi and A. Tomasiello, 6D holographic anomaly match as a continuum limit, JHEP 05 (2016) 031 [arXiv:1512.02225] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  82. [82]
    E. Alvarez, L. Álvarez-Gaumé and Y. Lozano, A canonical approach to duality transformations, Phys. Lett. B 336 (1994) 183 [hep-th/9406206] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  83. [83]
    Y. Lozano, Non-Abelian duality and canonical transformations, Phys. Lett. B 355 (1995) 165 [hep-th/9503045] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  84. [84]
    M. Buican, J. Hayling and C. Papageorgakis, Aspects of superconformal multiplets in D > 4, JHEP 11 (2016) 091 [arXiv:1606.00810] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  85. [85]
    C. Cordova, T.T. Dumitrescu and K. Intriligator, Multiplets of superconformal symmetry in diverse dimensions, arXiv:1612.00809 [INSPIRE].
  86. [86]
    C. Bachas and J. Estes, Spin-2 spectrum of defect theories, JHEP 06 (2011) 005 [arXiv:1103.2800] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of OviedoOviedoSpain
  2. 2.SISSA International School for Advanced Studies and INFN — Sezione di TriesteTriesteItaly

Personalised recommendations