Advertisement

Journal of High Energy Physics

, 2019:114 | Cite as

Holographic entanglement of purification for thermofield double states and thermal quench

  • Run-Qiu Yang
  • Cheng-Yong ZhangEmail author
  • Wen-Ming Li
Open Access
Regular Article - Theoretical Physics
  • 19 Downloads

Abstract

We explore the properties of holographic entanglement of purification (EoP) for two disjoint strips in the Schwarzschild-AdS black brane and the Vaidya-AdS black brane spacetimes. For two given strips on the same boundary of Schwarzschild-AdS spacetime, there is an upper bound of the separation beyond which the holographic EoP will always vanish no matter how wide the strips are. In the case that two strips are in the two boundaries of the spacetime respectively, we find that the holographic EoP exists only when the strips are wide enough. If the width is finite, the EoP can be nonzero in a finite time region. For thermal quench case, we find that the equilibrium time of holographic EoP is only sensitive to the width of strips, while that of the holographic mutual information is sensitive not only to the width of strips but also to their separation.

Keywords

AdS-CFT Correspondence Black Holes Conformal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from the anti-de sitter space/conformal field theory correspondence, Phys. Rev. Lett. 96 (2006) 181602.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    A. Kraskov, H. Stögbauer and P. Grassberger, Estimating mutual information, Phys. Rev. E 69 (2004) 066138.Google Scholar
  5. [5]
    W. Fischler, A. Kundu and S. Kundu, Holographic mutual information at finite temperature, Phys. Rev. D 87 (2013) 126012 [arXiv:1212.4764] [INSPIRE].
  6. [6]
    I.A. Morrison and M.M. Roberts, Mutual information between thermo-field doubles and disconnected holographic boundaries, JHEP 07 (2013) 081 [arXiv:1211.2887] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    T. Takayanagi and K. Umemoto, Entanglement of purification through holographic duality, Nature Phys. 14 (2018) 573 [arXiv:1708.09393] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    B.M. Terhal, M. Horodecki, D.W. Leung and D.P. DiVincenzo, The entanglement of purification, J. Math. Phys. 43 (2002) 4286.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    S. Bagchi and A.K. Pati, Monogamy, polygamy, and other properties of entanglement of purification, Phys. Rev. A 91 (2015) 042323.Google Scholar
  10. [10]
    M.M. Wolf, F. Verstraete, M.B. Hastings and J.I. Cirac, Area laws in quantum systems: mutual information and correlations, Phys. Rev. Lett. 100 (2008) 070502 [arXiv:0704.3906] [INSPIRE].
  11. [11]
    B. Chen, L. Chen, P.-x. Hao and J. Long, On the mutual information in conformal field theory, JHEP 06 (2017) 096 [arXiv:1704.03692] [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    B. Chen, Z.-Y. Fan, W.-M. Li and C.-Y. Zhang, Holographic mutual information of two disjoint spheres, JHEP 04 (2018) 113 [arXiv:1712.05131] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  13. [13]
    A. Bhattacharyya, T. Takayanagi and K. Umemoto, Entanglement of purification in free scalar field theories, JHEP 04 (2018) 132 [arXiv:1802.09545] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    H. Hirai, K. Tamaoka and T. Yokoya, Towards entanglement of purification for conformal field theories, PTEP 2018 (2018) 063B03 [arXiv:1803.10539] [INSPIRE].
  15. [15]
    J. Hauschild et al., Finding purifications with minimal entanglement, arXiv:1711.01288.
  16. [16]
    B.-B. Chen et al., Energy scales and exponential speedup in thermal tensor network simulations, Phys. Rev. X 8 (2018) 031082 [arXiv:1801.00142].
  17. [17]
    P. Nguyen et al., Entanglement of purification: from spin chains to holography, JHEP 01 (2018) 098 [arXiv:1709.07424] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    N. Bao and I.F. Halpern, Holographic inequalities and entanglement of purification, JHEP 03 (2018) 006 [arXiv:1710.07643] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    N. Bao and I.F. Halpern, Conditional and multipartite entanglements of purification and holography, arXiv:1805.00476 [INSPIRE].
  20. [20]
    R. Espíndola, A. Guijosa and J.F. Pedraza, Entanglement wedge reconstruction and entanglement of purification, Eur. Phys. J. C 78 (2018) 646 [arXiv:1804.05855] [INSPIRE].
  21. [21]
    K. Umemoto and Y. Zhou, Entanglement of purification for multipartite states and its holographic dual, JHEP 10 (2018) 152 [arXiv:1805.02625] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    K. Tamaoka, Entanglement wedge cross section from the dual density matrix, arXiv:1809.09109 [INSPIRE].
  23. [23]
    M. Headrick, V.E. Hubeny, A. Lawrence and M. Rangamani, Causality & holographic entanglement entropy, JHEP 12 (2014) 162 [arXiv:1408.6300] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J.M. Maldacena, Eternal black holes in Anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    T. Hartman and J. Maldacena, Time evolution of entanglement entropy from black hole interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    M. Miyaji et al., Distance between quantum states and gauge-gravity duality, Phys. Rev. Lett. 115 (2015) 261602 [arXiv:1507.07555] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Sinamuli and R.B. Mann, Geons and the quantum information metric, Phys. Rev. D 96 (2017) 026014 [arXiv:1612.06880] [INSPIRE].
  28. [28]
    B. Chen et al., Holographic subregion complexity under a thermal quench, JHEP 07 (2018) 034 [arXiv:1803.06680] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    A. Allais and E. Tonni, Holographic evolution of the mutual information, JHEP 01 (2012) 102 [arXiv:1110.1607] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    V. Ziogas, Holographic mutual information in global Vaidya-BTZ spacetime, JHEP 09 (2015) 114 [arXiv:1507.00306] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    J. Cardy, Thermalization and revivals after a quantum quench in conformal field theory, Phys. Rev. Lett. 112 (2014) 220401 [arXiv:1403.3040] [INSPIRE].
  32. [32]
    M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Quantum Universe CenterKorea Institute for Advanced StudySeoulKorea
  2. 2.Department of Physics and Center for Field Theory and Particle PhysicsFudan UniversityShanghaiChina
  3. 3.Department of Physics and State Key Laboratory of Nuclear Physics and TechnologyPeking UniversityBeijingP.R. China

Personalised recommendations