Journal of High Energy Physics

, 2019:113 | Cite as

New axion searches at flavor factories

  • Xabier Cid Vidal
  • Alberto Mariotti
  • Diego Redigolo
  • Filippo Sala
  • Kohsaku TobiokaEmail author
Open Access
Regular Article - Experimental Physics


We assess the impact of searches at flavor factories for new neutral resonances that couple to both photons and gluons. These are well motivated by “heavy axion” solutions of the strong CP problem and by frameworks addressing both Dark Matter and the Higgs hierarchy problem. We use LHCb public diphoton data around the Bs mass to derive the current best limit on these resonances for masses between 4.9 and 6.3 GeV. We estimate that a future LHCb dedicated search would test an axion decay constant of O(TeV) for axion masses in the few-to-tens of GeV, being fully complementary to the low mass ATLAS and CMS searches. We also derive the impact of BABAR searches based on ϒ decays and the future Belle-II reach.


Beyond Standard Model Particle and resonance production Hadron-Hadron scattering (experiments) Flavor physics B physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    A. Mariotti, D. Redigolo, F. Sala and K. Tobioka, New LHC bound on low-mass diphoton resonances, Phys. Lett. B 783 (2018) 13 [arXiv:1710.01743] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    F. Wilczek, Decays of Heavy Vector Mesons Into Higgs Particles, Phys. Rev. Lett. 39 (1977) 1304 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M. Freytsis, Z. Ligeti and J. Thaler, Constraining the Axion Portal with BKl + l , Phys. Rev. D 81 (2010) 034001 [arXiv:0911.5355] [INSPIRE].ADSGoogle Scholar
  4. [4]
    V.A. Rubakov, Grand unification and heavy axion, JETP Lett. 65 (1997) 621 [hep-ph/9703409] [INSPIRE].
  5. [5]
    Z. Berezhiani, L. Gianfagna and M. Giannotti, Strong CP problem and mirror world: The Weinberg-Wilczek axion revisited, Phys. Lett. B 500 (2001) 286 [hep-ph/0009290] [INSPIRE].
  6. [6]
    A. Hook, Anomalous solutions to the strong CP problem, Phys. Rev. Lett. 114 (2015) 141801 [arXiv:1411.3325] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    H. Fukuda, K. Harigaya, M. Ibe and T.T. Yanagida, Model of visible QCD axion, Phys. Rev. D 92 (2015) 015021 [arXiv:1504.06084] [INSPIRE].ADSGoogle Scholar
  8. [8]
    S. Dimopoulos, A. Hook, J. Huang and G. Marques-Tavares, A collider observable QCD axion, JHEP 11 (2016) 052 [arXiv:1606.03097] [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    B. Holdom and M.E. Peskin, Raising the Axion Mass, Nucl. Phys. B 208 (1982) 397 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    K. Choi, C.W. Kim and W.K. Sze, Mass Renormalization by Instantons and the Strong CP Problem, Phys. Rev. Lett. 61 (1988) 794 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    B. Holdom, Strong QCD at High-energies and a Heavy Axion, Phys. Lett. B 154 (1985) 316 [Erratum ibid. B 156 (1985) 452] [INSPIRE].
  12. [12]
    M. Dine and N. Seiberg, String Theory and the Strong CP Problem, Nucl. Phys. B 273 (1986) 109 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J.M. Flynn and L. Randall, A Computation of the Small Instanton Contribution to the Axion Potential, Nucl. Phys. B 293 (1987) 731 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    K. Choi and H.D. Kim, Small instanton contribution to the axion potential in supersymmetric models, Phys. Rev. D 59 (1999) 072001 [hep-ph/9809286] [INSPIRE].
  15. [15]
    P. Agrawal and K. Howe, Factoring the Strong CP Problem, JHEP 12 (2018) 029 [arXiv:1710.04213] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M.K. Gaillard, M.B. Gavela, R. Houtz, P. Quilez and R. Del Rey, Color unified dynamical axion, Eur. Phys. J. C 78 (2018) 972 [arXiv:1805.06465] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A.E. Nelson and N. Seiberg, R symmetry breaking versus supersymmetry breaking, Nucl. Phys. B 416 (1994) 46 [hep-ph/9309299] [INSPIRE].
  18. [18]
    H.-S. Goh and M. Ibe, R-axion detection at LHC, JHEP 03 (2009) 049 [arXiv:0810.5773] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    B. Bellazzini, A. Mariotti, D. Redigolo, F. Sala and J. Serra, R-axion at colliders, Phys. Rev. Lett. 119 (2017) 141804 [arXiv:1702.02152] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Kamionkowski and J. March-Russell, Planck scale physics and the Peccei-Quinn mechanism, Phys. Lett. B 282 (1992) 137 [hep-th/9202003] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    R. Holman, S.D.H. Hsu, T.W. Kephart, E.W. Kolb, R. Watkins and L.M. Widrow, Solutions to the strong CP problem in a world with gravity, Phys. Lett. B 282 (1992) 132 [hep-ph/9203206] [INSPIRE].
  22. [22]
    S.M. Barr and D. Seckel, Planck scale corrections to axion models, Phys. Rev. D 46 (1992) 539 [INSPIRE].ADSGoogle Scholar
  23. [23]
    S. Ghigna, M. Lusignoli and M. Roncadelli, Instability of the invisible axion, Phys. Lett. B 283 (1992) 278.ADSCrossRefGoogle Scholar
  24. [24]
    G. Ferretti and D. Karateev, Fermionic UV completions of Composite Higgs models, JHEP 03 (2014) 077 [arXiv:1312.5330] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Belyaev, G. Cacciapaglia, H. Cai, T. Flacke, A. Parolini and H. Serôdio, Singlets in composite Higgs models in light of the LHC 750 GeV diphoton excess, Phys. Rev. D 94 (2016) 015004 [arXiv:1512.07242] [INSPIRE].ADSGoogle Scholar
  26. [26]
    G. Ferretti, Gauge theories of Partial Compositeness: Scenarios for Run-II of the LHC, JHEP 06 (2016) 107 [arXiv:1604.06467] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    C. Kilic, T. Okui and R. Sundrum, Vectorlike Confinement at the LHC, JHEP 02 (2010) 018 [arXiv:0906.0577] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    K.S. Jeong, T.H. Jung and C.S. Shin, Axionic Electroweak Baryogenesis, arXiv:1806.02591 [INSPIRE].
  29. [29]
    ALEPH, DELPHI, L3, OPAL, SLD collaborations, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].
  30. [30]
    L3 collaboration, Isolated hard photon emission in hadronic Z0 decays, Phys. Lett. B 292 (1992) 472 [INSPIRE].
  31. [31]
    BaBar collaboration, Search for hadronic decays of a light Higgs boson in the radiative decay ϒ → γA 0, Phys. Rev. Lett. 107 (2011) 221803 [arXiv:1108.3549] [INSPIRE].
  32. [32]
    L3 collaboration, Search for anomalous Zγγγ events at LEP, Phys. Lett. B 345 (1995) 609 [INSPIRE].
  33. [33]
    S. Knapen, T. Lin, H.K. Lou and T. Melia, Searching for Axionlike Particles with Ultraperipheral Heavy-Ion Collisions, Phys. Rev. Lett. 118 (2017) 171801 [arXiv:1607.06083] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    E. Izaguirre, T. Lin and B. Shuve, Searching for Axionlike Particles in Flavor-Changing Neutral Current Processes, Phys. Rev. Lett. 118 (2017) 111802 [arXiv:1611.09355] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M.J. Dolan, T. Ferber, C. Hearty, F. Kahlhoefer and K. Schmidt-Hoberg, Revised constraints and Belle II sensitivity for visible and invisible axion-like particles, JHEP 12 (2017) 094 [arXiv:1709.00009] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    DELPHI collaboration, Measurement of the e + e γγ(γ) cross-section at LEP energies, Phys. Lett. B 327 (1994) 386 [INSPIRE].
  37. [37]
    L3 collaboration, Search for narrow high mass resonances in radiative decays of the Z0, Phys. Lett. B 262 (1991) 155 [INSPIRE].
  38. [38]
    S. Benson and A. Puig Navarro, Triggering B s0 → γγ at LHCb, LHCb-PUB-2018-006.
  39. [39]
    J. de Blas et al., Electroweak precision observables and Higgs-boson signal strengths in the Standard Model and beyond: present and future, JHEP 12 (2016) 135 [arXiv:1608.01509] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  40. [40]
    ATLAS collaboration, Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC, Nature Phys. 13 (2017) 852 [arXiv:1702.01625] [INSPIRE].
  41. [41]
    CMS collaboration, Evidence for light-by-light scattering and searches for axion-like particles in ultraperipheral PbPb collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV, arXiv:1810.04602 [INSPIRE].
  42. [42]
    K.G. Chetyrkin, B.A. Kniehl, M. Steinhauser and W.A. Bardeen, Effective QCD interactions of CP odd Higgs bosons at three loops, Nucl. Phys. B 535 (1998) 3 [hep-ph/9807241] [INSPIRE].
  43. [43]
    R.D. Ball, M. Bonvini, S. Forte, S. Marzani and G. Ridolfi, Higgs production in gluon fusion beyond NNLO, Nucl. Phys. B 874 (2013) 746 [arXiv:1303.3590] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    M. Bonvini, R.D. Ball, S. Forte, S. Marzani and G. Ridolfi, Updated Higgs cross section at approximate N 3 LO, J. Phys. G 41 (2014) 095002 [arXiv:1404.3204] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M. Bonvini, S. Marzani, C. Muselli and L. Rottoli, On the Higgs cross section at N 3 LO+N 3 LL and its uncertainty, JHEP 08 (2016) 105 [arXiv:1603.08000] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    T. Ahmed et al., Pseudo-scalar Higgs boson production at N 3 LO A + N 3 LL′, Eur. Phys. J. C 76 (2016) 663 [arXiv:1606.00837] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  50. [50]
    ATLAS collaboration, Measurement of isolated-photon pair production in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 01 (2013) 086 [arXiv:1211.1913] [INSPIRE].
  51. [51]
    ATLAS collaboration, Measurements of integrated and differential cross sections for isolated photon pair production in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 95 (2017) 112005 [arXiv:1704.03839] [INSPIRE].
  52. [52]
    CMS collaboration, Measurement of differential cross sections for the production of a pair of isolated photons in pp collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 74 (2014) 3129 [arXiv:1405.7225] [INSPIRE].
  53. [53]
    CDF collaboration, Measurement of the Cross Section for Prompt Isolated Diphoton Production in \( p\overline{p} \) Collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. D 84 (2011) 052006 [arXiv:1106.5131] [INSPIRE].
  54. [54]
    E. Masso and R. Toldra, On a light spinless particle coupled to photons, Phys. Rev. D 52 (1995) 1755 [hep-ph/9503293] [INSPIRE].
  55. [55]
    I. Komarov, Status and prospects of belle ii at superkekb, in Moriond QCD 2018, (2018).Google Scholar
  56. [56]
    Belle II collaboration, The Belle II Physics Book, arXiv:1808.10567 [INSPIRE].
  57. [57]
    S. Knapen, T. Lin, H.K. Lou and T. Melia, LHC limits on axion-like particles from heavy-ion collisions, in Photon 2017: International Conference on the Structure and the Interactions of the Photon and 22th International Workshop on Photon-Photon Collisions and the International Workshop on High Energy Photon Colliders, CERN, Geneva, Switzerland, May 22–26, 2017 (2017) [arXiv:1709.07110] [INSPIRE].
  58. [58]
    ATLAS collaboration, Search for new phenomena in events with at least three photons collected in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 210 [arXiv:1509.05051] [INSPIRE].
  59. [59]
    J. Jaeckel and M. Spannowsky, Probing MeV to 90 GeV axion-like particles with LEP and LHC, Phys. Lett. B 753 (2016) 482 [arXiv:1509.00476] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    M. Farina, D. Pappadopulo, F. Rompineve and A. Tesi, The photo-philic QCD axion, JHEP 01 (2017) 095 [arXiv:1611.09855] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    CMS collaboration, Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 01 (2018) 097 [arXiv:1710.00159] [INSPIRE].
  62. [62]
    E. Arganda, A.D. Medina, N.I. Mileo, R.A. Morales and A. Szynkman, Constraining R-axion models through dijet searches at the LHC, arXiv:1808.01292 [INSPIRE].
  63. [63]
    R.D. Peccei and H.R. Quinn, Constraints Imposed by CP Conservation in the Presence of Instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].ADSGoogle Scholar
  64. [64]
    R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    J.E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett. 43 (1979) 103 [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can Confinement Ensure Natural CP Invariance of Strong Interactions?, Nucl. Phys. B 166 (1980) 493 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  69. [69]
    L. Di Luzio, F. Mescia and E. Nardi, Redefining the Axion Window, Phys. Rev. Lett. 118 (2017) 031801 [arXiv:1610.07593] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    J.M. Pendlebury et al., Revised experimental upper limit on the electric dipole moment of the neutron, Phys. Rev. D 92 (2015) 092003 [arXiv:1509.04411] [INSPIRE].ADSGoogle Scholar
  71. [71]
    M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys. 318 (2005) 119 [hep-ph/0504231] [INSPIRE].
  72. [72]
    S.B. Giddings and A. Strominger, Axion Induced Topology Change in Quantum Gravity and String Theory, Nucl. Phys. B 306 (1988) 890 [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    R. Kallosh, A.D. Linde, D.A. Linde and L. Susskind, Gravity and global symmetries, Phys. Rev. D 52 (1995) 912 [hep-th/9502069] [INSPIRE].ADSMathSciNetGoogle Scholar
  74. [74]
    G. Grilli di Cortona, E. Hardy, J. Pardo Vega and G. Villadoro, The QCD axion, precisely, JHEP 01 (2016) 034 [arXiv:1511.02867] [INSPIRE].CrossRefGoogle Scholar
  75. [75]
    G.G. Raffelt, Stars as laboratories for fundamental physics, (1996) [INSPIRE].
  76. [76]
    H. Georgi, D.B. Kaplan and L. Randall, Manifesting the Invisible Axion at Low-energies, Phys. Lett. B 169 (1986) 73 [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    L. Randall, Composite axion models and Planck scale physics, Phys. Lett. B 284 (1992) 77 [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    M. Redi and R. Sato, Composite Accidental Axions, JHEP 05 (2016) 104 [arXiv:1602.05427] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  79. [79]
    L. Di Luzio, E. Nardi and L. Ubaldi, Accidental Peccei-Quinn symmetry protected to arbitrary order, Phys. Rev. Lett. 119 (2017) 011801 [arXiv:1704.01122] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    M. Duerr, K. Schmidt-Hoberg and J. Unwin, Protecting the Axion with Local Baryon Number, Phys. Lett. B 780 (2018) 553 [arXiv:1712.01841] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  81. [81]
    F. Bishara, J. Brod, B. Grinstein and J. Zupan, From quarks to nucleons in dark matter direct detection, JHEP 11 (2017) 059 [arXiv:1707.06998] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  82. [82]
    F. D’Eramo, J. de Vries and P. Panci, A 750 GeV Portal: LHC Phenomenology and Dark Matter Candidates, JHEP 05 (2016) 089 [arXiv:1601.01571] [INSPIRE].CrossRefGoogle Scholar
  83. [83]
    G. Steigman, B. Dasgupta and J.F. Beacom, Precise Relic WIMP Abundance and its Impact on Searches for Dark Matter Annihilation, Phys. Rev. D 86 (2012) 023506 [arXiv:1204.3622] [INSPIRE].ADSGoogle Scholar
  84. [84]
    Fermi-LAT collaboration, Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data, Phys. Rev. Lett. 115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].
  85. [85]
    G. Giesen et al., AMS-02 antiprotons, at last! Secondary astrophysical component and immediate implications for Dark Matter, JCAP 09 (2015) 023 [arXiv:1504.04276] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    H.E.S.S. collaboration, Search for dark matter annihilations towards the inner Galactic halo from 10 years of observations with H.E.S.S, Phys. Rev. Lett. 117 (2016) 111301 [arXiv:1607.08142] [INSPIRE].
  87. [87]
    B. Bellazzini, M. Cliche and P. Tanedo, Effective theory of self-interacting dark matter, Phys. Rev. D 88 (2013) 083506 [arXiv:1307.1129] [INSPIRE].ADSGoogle Scholar
  88. [88]
    A. Brignole, F. Feruglio and F. Zwirner, Signals of a superlight gravitino at e + e colliders when the other superparticles are heavy, Nucl. Phys. B 516 (1998) 13 [Erratum ibid. B 555 (1999) 653] [hep-ph/9711516] [INSPIRE].
  89. [89]
    A. Brignole, F. Feruglio, M.L. Mangano and F. Zwirner, Signals of a superlight gravitino at hadron colliders when the other superparticles are heavy, Nucl. Phys. B 526 (1998) 136 [Erratum ibid. B 582 (2000) 759] [hep-ph/9801329] [INSPIRE].
  90. [90]
    F. Maltoni, A. Martini, K. Mawatari and B. Oexl, Signals of a superlight gravitino at the LHC, JHEP 04 (2015) 021 [arXiv:1502.01637] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    K. Osato, T. Sekiguchi, M. Shirasaki, A. Kamada and N. Yoshida, Cosmological Constraint on the Light Gravitino Mass from CMB Lensing and Cosmic Shear, JCAP 06 (2016) 004 [arXiv:1601.07386] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    S. Dimopoulos, G.F. Giudice and A. Pomarol, Dark matter in theories of gauge mediated supersymmetry breaking, Phys. Lett. B 389 (1996) 37 [hep-ph/9607225] [INSPIRE].
  93. [93]
    J. Mardon, Y. Nomura and J. Thaler, Cosmic Signals from the Hidden Sector, Phys. Rev. D 80 (2009) 035013 [arXiv:0905.3749] [INSPIRE].ADSGoogle Scholar
  94. [94]
    J. Fan, J. Thaler and L.-T. Wang, Dark matter from dynamical SUSY breaking, JHEP 06 (2010) 045 [arXiv:1004.0008] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  95. [95]
    K.A. Intriligator, N. Seiberg and D. Shih, Supersymmetry breaking, R-symmetry breaking and metastable vacua, JHEP 07 (2007) 017 [hep-th/0703281] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  96. [96]
    J. Bagger, E. Poppitz and L. Randall, The R axion from dynamical supersymmetry breaking, Nucl. Phys. B 426 (1994) 3 [hep-ph/9405345] [INSPIRE].
  97. [97]
    LHCb collaboration, LHCb Detector Performance, Int. J. Mod. Phys. A 30 (2015) 1530022 [arXiv:1412.6352] [INSPIRE].
  98. [98]
    LHCb collaboration, First Years of Running for the LHCb Calorimeter System, PoS(TIPP2014)030 (2014) [arXiv:1407.4289] [INSPIRE].
  99. [99]
    O. Deschamps, F.P. Machefert, M.H. Schune, G. Pakhlova and I. Belyaev, Photon and neutral pion reconstruction, LHCb-2003-091.Google Scholar
  100. [100]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  101. [101]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
  102. [102]
    J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    E. Conte, B. Fuks and G. Serret, MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Instituto Galego de Física de Altas Enerxías (IGFAE)Santiago de CompostelaSpain
  2. 2.Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, and International Solvay InstitutesBrusselsBelgium
  3. 3.Raymond and Beverly Sackler School of Physics and AstronomyTel-Aviv UniversityTel-AvivIsrael
  4. 4.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.
  5. 5.Department of Particle Physics and AstrophysicsWeizmann Institute of ScienceRehovotIsrael
  6. 6.DESYHamburgGermany
  7. 7.Department of PhysicsFlorida State UniversityTallahasseeU.S.A.
  8. 8.Theory Center, High Energy Accelerator Research Organization (KEK)TsukubaJapan

Personalised recommendations