Journal of High Energy Physics

, 2019:112 | Cite as

Boosting perturbative QCD stability in quarkonium production

  • Hua-Sheng ShaoEmail author
Open Access
Regular Article - Theoretical Physics


The aim of this paper is to introduce a general way to stabilize the perturbative QCD computations of heavy quarkonium production in the boosted or high-momentum transferring region with tree-level generators only. Such an approach is possible by properly taking into account the power-enhanced perturbative contributions in a soft and collinear safe manner without requiring any complete higher-order computations. The complicated NLO results for inclusive quarkonium hadroproduction can be well reproduced within our approach based on a tree-level generator HELAC-Onia. We have applied it to estimate the last missing leading-twist contribution from the spin-triplet color-singlet S-wave production at \( \mathcal{O}\left({\alpha}_s^5\right) \), which is a NNLO term in the αs expansion for the quarkonium PT spectrum. We conclude that the missing NNLO contribution will not change the order of the magnitude of the short-distance coefficient. Such an approach is also quite appealing as it foresees broad applications in quarkonium-associated production processes, which are mostly absent of complete higher-order computations and fragmentation functions.


NLO Computations QCD Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    G.T. Bodwin, E. Braaten and G.P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51 (1995) 1125 [Erratum ibid. D 55 (1997) 5853] [hep-ph/9407339] [INSPIRE].
  2. [2]
    J.M. Campbell, F. Maltoni and F. Tramontano, QCD corrections to J/psi and Upsilon production at hadron colliders, Phys. Rev. Lett. 98 (2007) 252002 [hep-ph/0703113] [INSPIRE].
  3. [3]
    P. Artoisenet, J.M. Campbell, J.P. Lansberg, F. Maltoni and F. Tramontano, ϒ Production at Fermilab Tevatron and LHC Energies, Phys. Rev. Lett. 101 (2008) 152001 [arXiv:0806.3282] [INSPIRE].
  4. [4]
    J.-P. Lansberg and H.-S. Shao, Production of J/ψ + η c versus J/ψ + J/ψ at the LHC: Importance of Real α s5 Corrections, Phys. Rev. Lett. 111 (2013) 122001 [arXiv:1308.0474] [INSPIRE].
  5. [5]
    L.-P. Sun, H. Han and K.-T. Chao, Impact of J/ψ pair production at the LHC and predictions in nonrelativistic QCD, Phys. Rev. 94 (2016) 074033 [arXiv:1404.4042] [INSPIRE].
  6. [6]
    M. Butenschoen and B.A. Kniehl, Reconciling J/ψ production at HERA, RHIC, Tevatron and LHC with NRQCD factorization at next-to-leading order, Phys. Rev. Lett. 106 (2011) 022003 [arXiv:1009.5662] [INSPIRE].
  7. [7]
    Y.-Q. Ma, K. Wang and K.-T. Chao, J/ψ(ψ ) production at the Tevatron and LHC at \( \mathcal{O}\left({\alpha}_s^4{v}^4\right) \) in nonrelativistic QCD, Phys. Rev. Lett. 106 (2011) 042002 [arXiv:1009.3655] [INSPIRE].
  8. [8]
    K.-T. Chao, Y.-Q. Ma, H.-S. Shao, K. Wang and Y.-J. Zhang, J/ψ Polarization at Hadron Colliders in Nonrelativistic QCD, Phys. Rev. Lett. 108 (2012) 242004 [arXiv:1201.2675] [INSPIRE].
  9. [9]
    B. Gong, L.-P. Wan, J.-X. Wang and H.-F. Zhang, Polarization for Prompt J/ψ and ψ(2s) Production at the Tevatron and LHC, Phys. Rev. Lett. 110 (2013) 042002 [arXiv:1205.6682] [INSPIRE].
  10. [10]
    G.T. Bodwin, H.S. Chung, U.-R. Kim and J. Lee, Fragmentation contributions to J/ψ production at the Tevatron and the LHC, Phys. Rev. Lett. 113 (2014) 022001 [arXiv:1403.3612] [INSPIRE].
  11. [11]
    Y.-Q. Ma, K. Wang and K.-T. Chao, A complete NLO calculation of the J/ψ and ψ production at hadron colliders, Phys. Rev. D 84 (2011) 114001 [arXiv:1012.1030] [INSPIRE].
  12. [12]
    F. Caravaglios, M.L. Mangano, M. Moretti and R. Pittau, A New approach to multijet calculations in hadron collisions, Nucl. Phys. B 539 (1999) 215 [hep-ph/9807570] [INSPIRE].
  13. [13]
    M.L. Mangano, M. Moretti and R. Pittau, Multijet matrix elements and shower evolution in hadronic collisions: \( Wb\overline{b}+n \) jets as a case study, Nucl. Phys. B 632 (2002) 343 [hep-ph/0108069] [INSPIRE].
  14. [14]
    S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].
  15. [15]
    F. Krauss, Matrix elements and parton showers in hadronic interactions, JHEP 08 (2002) 015 [hep-ph/0205283] [INSPIRE].
  16. [16]
    L. Lönnblad, Correcting the color dipole cascade model with fixed order matrix elements, JHEP 05 (2002) 046 [hep-ph/0112284] [INSPIRE].
  17. [17]
    N. Lavesson and L. Lönnblad, W+jets matrix elements and the dipole cascade, JHEP 07 (2005) 054 [hep-ph/0503293] [INSPIRE].
  18. [18]
    L. Lönnblad and S. Prestel, Matching Tree-Level Matrix Elements with Interleaved Showers, JHEP 03 (2012) 019 [arXiv:1109.4829] [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    K. Hamilton and P. Nason, Improving NLO-parton shower matched simulations with higher order matrix elements, JHEP 06 (2010) 039 [arXiv:1004.1764] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Hoche, F. Krauss, M. Schonherr and F. Siegert, NLO matrix elements and truncated showers, JHEP 08 (2011) 123 [arXiv:1009.1127] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    N. Lavesson and L. Lönnblad, Extending CKKW-merging to One-Loop Matrix Elements, JHEP 12 (2008) 070 [arXiv:0811.2912] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    L. Lönnblad and S. Prestel, Merging Multi-leg NLO Matrix Elements with Parton Showers, JHEP 03 (2013) 166 [arXiv:1211.7278] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    T. Gehrmann, S. Hoche, F. Krauss, M. Schonherr and F. Siegert, NLO QCD matrix elements + parton showers in e + e hadrons, JHEP 01 (2013) 144 [arXiv:1207.5031] [INSPIRE].
  24. [24]
    S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, QCD matrix elements + parton showers: The NLO case, JHEP 04 (2013) 027 [arXiv:1207.5030] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    R. Frederix and S. Frixione, Merging meets matching in MC@NLO, JHEP 12 (2012) 061 [arXiv:1209.6215] [INSPIRE].
  26. [26]
    L. Lönnblad and S. Prestel, Unitarising Matrix Element + Parton Shower merging, JHEP 02 (2013) 094 [arXiv:1211.4827] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    K. Hamilton, P. Nason, E. Re and G. Zanderighi, NNLOPS simulation of Higgs boson production, JHEP 10 (2013) 222 [arXiv:1309.0017] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Rubin, G.P. Salam and S. Sapeta, Giant QCD K-factors beyond NLO, JHEP 09 (2010) 084 [arXiv:1006.2144] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    Y.-Q. Ma, J.-W. Qiu, G. Sterman and H. Zhang, Factorized power expansion for high-p T heavy quarkonium production, Phys. Rev. Lett. 113 (2014) 142002 [arXiv:1407.0383] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    Z.-B. Kang, J.-W. Qiu and G. Sterman, Heavy quarkonium production and polarization, Phys. Rev. Lett. 108 (2012) 102002 [arXiv:1109.1520] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    H.-S. Shao, HELAC-Onia: An automatic matrix element generator for heavy quarkonium physics, Comput. Phys. Commun. 184 (2013) 2562 [arXiv:1212.5293] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    H.-S. Shao, HELAC-Onia 2.0: an upgraded matrix-element and event generator for heavy quarkonium physics, Comput. Phys. Commun. 198 (2016) 238 [arXiv:1507.03435] [INSPIRE].
  33. [33]
    A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M.L. Mangano, NLO production and decay of quarkonium, Nucl. Phys. B 514 (1998) 245 [hep-ph/9707223] [INSPIRE].
  34. [34]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
  35. [35]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
  36. [36]
    Y.-Q. Ma, K. Wang and K.-T. Chao, QCD radiative corrections to χ cJ production at hadron colliders, Phys. Rev. D 83 (2011) 111503 [arXiv:1002.3987] [INSPIRE].
  37. [37]
    H.-S. Shao, Y.-Q. Ma, K. Wang and K.-T. Chao, Polarizations of χ c1 and χ c2 in prompt production at the LHC, Phys. Rev. Lett. 112 (2014) 182003 [arXiv:1402.2913] [INSPIRE].
  38. [38]
    J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002)012 [hep-ph/0201195] [INSPIRE].
  39. [39]
    A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft Drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].
  40. [40]
    E. Braaten and Y.-Q. Chen, Dimensional regularization in quarkonium calculations, Phys. Rev. D 55 (1997) 2693 [hep-ph/9610401] [INSPIRE].
  41. [41]
    CMS collaboration, Measurement of quarkonium production cross sections in pp collisions at \( \sqrt{s}=13 \) TeV, Phys. Lett. B 780 (2018) 251 [arXiv:1710.11002] [INSPIRE].
  42. [42]
    H.S. Shao, H. Han, Y.Q. Ma, C. Meng, Y.J. Zhang and K.T. Chao, Yields and polarizations of prompt J/ψ and ψ(2S) production in hadronic collisions, JHEP 05 (2015) 103 [arXiv:1411.3300] [INSPIRE].
  43. [43]
    Quarkonium Working Group collaboration, Heavy quarkonium physics, hep-ph/0412158 [INSPIRE].
  44. [44]
    P. Artoisenet, J.P. Lansberg and F. Maltoni, Hadroproduction of J/ψ and ϒ in association with a heavy-quark pair, Phys. Lett. B 653 (2007) 60 [hep-ph/0703129] [INSPIRE].
  45. [45]
    P. Artoisenet, Quarkonium production phenomenology, Ph.D. Thesis, Louvain U., CP3 (2009).Google Scholar
  46. [46]
    D. Li, Y.-Q. Ma and K.-T. Chao, χ cJ production associated with a \( c\overline{c} \) pair at hadron colliders, Phys. Rev. D 83 (2011) 114037 [arXiv:1106.4262] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique et Hautes Energies (LPTHE), UMR 7589Sorbonne Université et CNRSParis Cedex 05France

Personalised recommendations