Advertisement

Journal of High Energy Physics

, 2019:111 | Cite as

Polarized hyperon production in single-inclusive electron-positron annihilation at next-to-leading order

  • Leonard Gamberg
  • Zhong-Bo Kang
  • Daniel Pitonyak
  • Marc SchlegelEmail author
  • Shinsuke Yoshida
Open Access
Regular Article - Theoretical Physics
  • 22 Downloads

Abstract

We study the production of polarized Λ-hyperons in electron-positron annihilation. We are particularly interested in the transverse-spin dependence of the cross section for unpolarized incident electron-positron pairs. At high energies this process may be described in the collinear twist-3 framework, where the hadronization transition of partons into a transversely polarized Λ-hyperon can be written in terms of collinear twist-3 fragmentation matrix elements. We calculate the hard partonic cross sections and interference terms in perturbative QCD to next-to-leading order accuracy. We find that the QCD equation of motion plays a crucial role in our analysis. As a byproduct, assuming the validity of QCD factorization for twist-3 observables at next-to-leading order, we derive the evolution equation for the relevant twist-3 fragmentation matrix element.

Keywords

NLO Computations 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    G. Bunce et al., Λ0 hyperon polarization in inclusive production by 300 GeV protons on beryllium, Phys. Rev. Lett. 36 (1976) 1113 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    L. Schachinger et al., A precise measurement of the Λ0 magnetic moment, Phys. Rev. Lett. 41 (1978) 1348 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    K.J. Heller et al., Polarization of Ξ0 and Λ hyperons produced by 400 GeV/c protons, Phys. Rev. Lett. 51 (1983) 2025 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    B. Lundberg et al., Polarization in inclusive Λ and \( \overline{\Lambda} \) production at large p T, Phys. Rev. D 40 (1989) 3557 [INSPIRE].ADSGoogle Scholar
  5. [5]
    B.S. Yuldashev et al., Neutral strange particle production in p Ne-20 and pN interactions at 300 GeV/c, Phys. Rev. D 43 (1991) 2792 [INSPIRE].ADSGoogle Scholar
  6. [6]
    E.J. Ramberg et al., Polarization of Λ and \( \overline{\Lambda} \) produced by 800 GeV protons, Phys. Lett. B 338 (1994) 403 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    V. Fanti et al., A measurement of the transverse polarization of Λ hyperons produced in inelastic pN reactions at 450 GeV proton energy, Eur. Phys. J. C 6 (1999) 265 [INSPIRE].ADSGoogle Scholar
  8. [8]
    HERA-B collaboration, Polarization of Λ and \( \overline{\Lambda} \) in 920 GeV fixed-target proton-nucleus collisions, Phys. Lett. B 638 (2006) 415 [hep-ex/0603047] [INSPIRE].
  9. [9]
    S. Erhan et al., Λ0 polarization in proton proton interactions at \( \sqrt{s}=53 \) GeV and 62 GeV, Phys. Lett. B 82 (1979) 301.ADSCrossRefGoogle Scholar
  10. [10]
    ATLAS collaboration, Measurement of the transverse polarization of Λ and \( \overline{\Lambda} \) hyperons produced in proton-proton collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Phys. Rev. D 91 (2015) 032004 [arXiv:1412.1692] [INSPIRE].
  11. [11]
    HERMES collaboration, Longitudinal Spin Transfer to the Lambda Hyperon in Semi-Inclusive Deep-Inelastic Scattering, Phys. Rev. D 74 (2006) 072004 [hep-ex/0607004] [INSPIRE].
  12. [12]
    HERMES collaboration, Transverse Polarization of Lambda and anti-Lambda Hyperons in Quasireal Photoproduction, Phys. Rev. D 76 (2007) 092008 [arXiv:0704.3133] [INSPIRE].
  13. [13]
    HERMES collaboration, Transverse polarization of Λ hyperons from quasireal photoproduction on nuclei, Phys. Rev. D 90 (2014) 072007 [arXiv:1406.3236] [INSPIRE].
  14. [14]
    NOMAD collaboration, Measurement of the Lambda polarization in ν μ charged current interactions in the NOMAD experiment, Nucl. Phys. B 588 (2000) 3 [INSPIRE].
  15. [15]
    NOMAD collaboration, Measurement of the \( \overline{\Lambda} \) polarization in muon-neutrino charged current interactions in the NOMAD experiment, Nucl. Phys. B 605 (2001) 3 [hep-ex/0103047] [INSPIRE].
  16. [16]
    M. Anselmino, D. Boer, U. D’Alesio and F. Murgia, Λ polarization from unpolarized quark fragmentation, Phys. Rev. D 63 (2001) 054029 [hep-ph/0008186] [INSPIRE].
  17. [17]
    M. Anselmino, D. Boer, U. D’Alesio and F. Murgia, Transverse Λ polarization in semiinclusive DIS, Phys. Rev. D 65 (2002) 114014 [hep-ph/0109186] [INSPIRE].
  18. [18]
    D. Boer, Z.-B. Kang, W. Vogelsang and F. Yuan, Test of the universality of naive-time-reversal-odd fragmentation functions, Phys. Rev. Lett. 105 (2010) 202001 [arXiv:1008.3543] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Metz and A. Vossen, Parton fragmentation functions, Prog. Part. Nucl. Phys. 91 (2016) 136 [arXiv:1607.02521] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    OPAL collaboration, Polarization and forward-backward asymmetry of Λ baryons in hadronic Z 0 decays, Eur. Phys. J. C 2 (1998) 49 [hep-ex/9708027] [INSPIRE].
  21. [21]
    Belle collaboration, Production cross sections of hyperons and charmed baryons from e + e annihilation near \( \sqrt{s}=10.52 \) GeV, Phys. Rev. D 97 (2018) 072005 [arXiv:1706.06791] [INSPIRE].
  22. [22]
    Belle collaboration, Observation of transverse \( \Lambda /\overline{\Lambda} \) hyperon polarization in e + e annihilation at Belle, arXiv:1611.06648 [INSPIRE].
  23. [23]
    Belle collaboration, Observation of transverse \( \Lambda /\overline{\Lambda} \) hyperon polarization in e + e annihilation at Belle, arXiv:1808.05000 [INSPIRE].
  24. [24]
    J.-w. Qiu and G.F. Sterman, Single transverse spin asymmetries in direct photon production, Nucl. Phys. B 378 (1992) 52 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J.-w. Qiu and G.F. Sterman, Single transverse spin asymmetries in hadronic pion production, Phys. Rev. D 59 (1999) 014004 [hep-ph/9806356] [INSPIRE].
  26. [26]
    C. Kouvaris, J.-W. Qiu, W. Vogelsang and F. Yuan, Single transverse-spin asymmetry in high transverse momentum pion production in pp collisions, Phys. Rev. D 74 (2006) 114013 [hep-ph/0609238] [INSPIRE].
  27. [27]
    H. Eguchi, Y. Koike and K. Tanaka, Single transverse spin asymmetry for large-p T pion production in semi-inclusive deep inelastic scattering, Nucl. Phys. B 752 (2006) 1 [hep-ph/0604003] [INSPIRE].
  28. [28]
    H. Eguchi, Y. Koike and K. Tanaka, Twist-3 formalism for single transverse spin asymmetry reexamined: semi-inclusive deep inelastic scattering, Nucl. Phys. B 763 (2007) 198 [hep-ph/0610314] [INSPIRE].
  29. [29]
    Y. Koike and T. Tomita, Soft-fermion-pole contribution to single-spin asymmetry for pion production in pp collisions, Phys. Lett. B 675 (2009) 181 [arXiv:0903.1923] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    H. Beppu, Y. Koike, K. Tanaka and S. Yoshida, Contribution of twist-3 multi-gluon correlation functions to single spin asymmetry in semi-inclusive deep inelastic scattering, Phys. Rev. D 82 (2010) 054005 [arXiv:1007.2034] [INSPIRE].ADSGoogle Scholar
  31. [31]
    Y. Koike and S. Yoshida, Three-gluon contribution to the single spin asymmetry in Drell-Yan and direct-photon processes, Phys. Rev. D 85 (2012) 034030 [arXiv:1112.1161] [INSPIRE].ADSGoogle Scholar
  32. [32]
    Z.-B. Kang, F. Yuan and J. Zhou, Twist-three fragmentation function contribution to the single spin asymmetry in pp collisions, Phys. Lett. B 691 (2010) 243 [arXiv:1002.0399] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Metz and D. Pitonyak, Fragmentation contribution to the transverse single-spin asymmetry in proton-proton collisions, Phys. Lett. B 723 (2013) 365 [Erratum ibid. B 762 (2016) 549] [arXiv:1212.5037] [INSPIRE].
  34. [34]
    K. Kanazawa and Y. Koike, Contribution of twist-3 fragmentation function to single transverse-spin asymmetry in semi-inclusive deep inelastic scattering, Phys. Rev. D 88 (2013) 074022 [arXiv:1309.1215] [INSPIRE].ADSGoogle Scholar
  35. [35]
    H. Beppu, K. Kanazawa, Y. Koike and S. Yoshida, Three-gluon contribution to the single spin asymmetry for light hadron production in pp collision, Phys. Rev. D 89 (2014) 034029 [arXiv:1312.6862] [INSPIRE].ADSGoogle Scholar
  36. [36]
    D. Pitonyak, Transverse spin observables in hard-scattering hadronic processes within collinear factorization, Int. J. Mod. Phys. A 31 (2016) 1630049 [arXiv:1608.05353] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  37. [37]
    Y. Kanazawa and Y. Koike, Polarization in hadronic Lambda hyperon production and chiral odd twist-three quark distribution, Phys. Rev. D 64 (2001) 034019 [hep-ph/0012225] [INSPIRE].
  38. [38]
    J. Zhou, F. Yuan and Z.-T. Liang, Hyperon polarization in unpolarized scattering processes, Phys. Rev. D 78 (2008) 114008 [arXiv:0808.3629] [INSPIRE].ADSGoogle Scholar
  39. [39]
    K. Kanazawa, A. Metz, D. Pitonyak and M. Schlegel, Single-spin asymmetries in the leptoproduction of transversely polarized Λ hyperons, Phys. Lett. B 744 (2015) 385 [arXiv:1503.02003] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    Y. Koike, K. Yabe and S. Yoshida, Hyperon polarization from the twist-3 distribution in unpolarized proton-proton collision, Phys. Rev. D 92 (2015) 094011 [arXiv:1509.06830] [INSPIRE].ADSGoogle Scholar
  41. [41]
    Y. Koike, A. Metz, D. Pitonyak, K. Yabe and S. Yoshida, Twist-3 fragmentation contribution to polarized hyperon production in unpolarized hadronic collisions, Phys. Rev. D 95 (2017) 114013 [arXiv:1703.09399] [INSPIRE].ADSGoogle Scholar
  42. [42]
    W. Vogelsang and F. Yuan, Next-to-leading order calculation of the single transverse spin asymmetry in the Drell-Yan process, Phys. Rev. D 79 (2009) 094010 [arXiv:0904.0410] [INSPIRE].ADSGoogle Scholar
  43. [43]
    Z.-B. Kang, I. Vitev and H. Xing, Transverse momentum-weighted Sivers asymmetry in semi-inclusive deep inelastic scattering at next-to-leading order, Phys. Rev. D 87 (2013) 034024 [arXiv:1212.1221] [INSPIRE].ADSGoogle Scholar
  44. [44]
    L.-Y. Dai, Z.-B. Kang, A. Prokudin and I. Vitev, Next-to-leading order transverse momentum-weighted Sivers asymmetry in semi-inclusive deep inelastic scattering: the role of the three-gluon correlator, Phys. Rev. D 92 (2015) 114024 [arXiv:1409.5851] [INSPIRE].ADSGoogle Scholar
  45. [45]
    S. Yoshida, New pole contribution to P h -weighted single-transverse spin asymmetry in semi-inclusive deep inelastic scattering, Phys. Rev. D 93 (2016) 054048 [arXiv:1601.07737] [INSPIRE].ADSGoogle Scholar
  46. [46]
    A.P. Chen, J.P. Ma and G.P. Zhang, One-loop corrections to single spin asymmetries at twist-3 in Drell-Yan processes, Phys. Rev. D 95 (2017) 074005 [arXiv:1607.08676] [INSPIRE].ADSGoogle Scholar
  47. [47]
    A.P. Chen, J.P. Ma and G.P. Zhang, One-loop corrections of single spin asymmetries in semi-inclusive DIS, Phys. Rev. D 97 (2018) 054003 [arXiv:1708.09091] [INSPIRE].ADSGoogle Scholar
  48. [48]
    S. Meissner and A. Metz, Partonic pole matrix elements for fragmentation, Phys. Rev. Lett. 102 (2009) 172003 [arXiv:0812.3783] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    L.P. Gamberg, A. Mukherjee and P.J. Mulders, A model independent analysis of gluonic pole matrix elements and universality of TMD fragmentation functions, Phys. Rev. D 83 (2011) 071503 [arXiv:1010.4556] [INSPIRE].ADSGoogle Scholar
  50. [50]
    Y. Koike, K. Tanaka and S. Yoshida, Drell-Yan double-spin asymmetry A(LT) in polarized \( p\overline{p} \) collisions: Wandzura-Wilczek contribution, Phys. Lett. B 668 (2008) 286 [arXiv:0805.2289] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J. Zhou, F. Yuan and Z.-T. Liang, Transverse momentum dependent quark distributions and polarized Drell-Yan processes, Phys. Rev. D 81 (2010) 054008 [arXiv:0909.2238] [INSPIRE].ADSGoogle Scholar
  52. [52]
    Z.T. Liang et al., Double spin asymmetry A LT in direct photon production, Phys. Lett. B 712 (2012) 235 [arXiv:1203.3956] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    A. Metz, D. Pitonyak, A. Schaefer and J. Zhou, Analysis of the double-spin asymmetry A LT in inelastic nucleon-nucleon collisions, Phys. Rev. D 86 (2012) 114020 [arXiv:1210.6555] [INSPIRE].ADSGoogle Scholar
  54. [54]
    K. Kanazawa, A. Metz, D. Pitonyak and M. Schlegel, Longitudinal-transverse double-spin asymmetries in single-inclusive leptoproduction of hadrons, Phys. Lett. B 742 (2015) 340 [arXiv:1411.6459] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    Y. Koike, D. Pitonyak and S. Yoshida, Twist-3 effect from the longitudinally polarized proton for A LT in hadron production from pp collisions, Phys. Lett. B 759 (2016) 75 [arXiv:1603.07908] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    K. Kanazawa et al., Operator constraints for twist-3 functions and Lorentz invariance properties of twist-3 observables, Phys. Rev. D 93 (2016) 054024 [arXiv:1512.07233] [INSPIRE].ADSGoogle Scholar
  57. [57]
    X.-D. Ji, Chiral odd and spin dependent quark fragmentation functions and their applications, Phys. Rev. D 49 (1994) 114 [hep-ph/9307235] [INSPIRE].
  58. [58]
    K. Chen, G.R. Goldstein, R.L. Jaffe and X.-D. Ji, Probing quark fragmentation functions for spin 1/2 baryon production in unpolarized e + e annihilation, Nucl. Phys. B 445 (1995) 380 [hep-ph/9410337] [INSPIRE].
  59. [59]
    P.J. Mulders and R.D. Tangerman, The complete tree level result up to order 1/Q for polarized deep inelastic leptoproduction, Nucl. Phys. B 461 (1996) 197 [Erratum ibid. B 484 (1997) 538] [hep-ph/9510301] [INSPIRE].
  60. [60]
    D. Boer, R. Jakob and P.J. Mulders, Asymmetries in polarized hadron production in e + e annihilation up to order 1/Q, Nucl. Phys. B 504 (1997) 345 [hep-ph/9702281] [INSPIRE].
  61. [61]
    J.C. Collins and D.E. Soper, Parton distribution and decay functions, Nucl. Phys. B 194 (1982) 445 [INSPIRE].ADSGoogle Scholar
  62. [62]
    J. Collins, Foundations of perturbative QCD, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 32 (2011) 1 [INSPIRE].MathSciNetGoogle Scholar
  63. [63]
    J.C. Collins, Leading twist single transverse-spin asymmetries: Drell-Yan and deep inelastic scattering, Phys. Lett. B 536 (2002) 43 [hep-ph/0204004] [INSPIRE].
  64. [64]
    X.-d. Ji and F. Yuan, Parton distributions in light cone gauge: where are the final state interactions?, Phys. Lett. B 543 (2002) 66 [hep-ph/0206057] [INSPIRE].
  65. [65]
    A.V. Belitsky, X. Ji and F. Yuan, Final state interactions and gauge invariant parton distributions, Nucl. Phys. B 656 (2003) 165 [hep-ph/0208038] [INSPIRE].
  66. [66]
    D. Boer, P.J. Mulders and F. Pijlman, Universality of T odd effects in single spin and azimuthal asymmetries, Nucl. Phys. B 667 (2003) 201 [hep-ph/0303034] [INSPIRE].
  67. [67]
    J.C. Collins and A. Metz, Universality of soft and collinear factors in hard-scattering factorization, Phys. Rev. Lett. 93 (2004) 252001 [hep-ph/0408249] [INSPIRE].
  68. [68]
    A. Bacchetta et al., Semi-inclusive deep inelastic scattering at small transverse momentum, JHEP 02 (2007) 093 [hep-ph/0611265] [INSPIRE].
  69. [69]
    Y. Koike and S. Yoshida, Probing the three-gluon correlation functions by the single spin asymmetry in p pDX, Phys. Rev. D 84 (2011) 014026 [arXiv:1104.3943] [INSPIRE].ADSGoogle Scholar
  70. [70]
    R.L. Jaffe, Parton distribution functions for twist four, Nucl. Phys. B 229 (1983) 205 [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    N. Christ and T.D. Lee, Possible tests of Cst and Tst invariances in l ± + Nl ± + Γ and AB + e + +e , Phys. Rev. 143 (1966) 1310 [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    A. Metz, M. Schlegel and K. Goeke, Transverse single spin asymmetries in inclusive deep-inelastic scattering, Phys. Lett. B 643 (2006) 319 [hep-ph/0610112] [INSPIRE].
  73. [73]
    A. Afanasev, M. Strikman and C. Weiss, Transverse target spin asymmetry in inclusive DIS with two-photon exchange, Phys. Rev. D 77 (2008) 014028 [arXiv:0709.0901] [INSPIRE].ADSGoogle Scholar
  74. [74]
    A. Metz et al., Single-spin asymmetries in inclusive deep inelastic scattering and multiparton correlations in the nucleon, Phys. Rev. D 86 (2012) 094039 [arXiv:1209.3138] [INSPIRE].ADSGoogle Scholar
  75. [75]
    M. Schlegel, Partonic description of the transverse target single-spin asymmetry in inclusive deep-inelastic scattering, Phys. Rev. D 87 (2013) 034006 [arXiv:1211.3579] [INSPIRE].ADSGoogle Scholar
  76. [76]
    K. Goeke, A. Metz and M. Schlegel, Parameterization of the quark-quark correlator of a spin-1/2 hadron, Phys. Lett. B 618 (2005) 90 [hep-ph/0504130] [INSPIRE].
  77. [77]
    G. Leibbrandt, Noncovariant gauges: quantization of Yang-Mills and Chern-Simons theory in axial type gauges, World Scientific, Singapore (1994).CrossRefzbMATHGoogle Scholar
  78. [78]
    D. de Florian, M. Stratmann and W. Vogelsang, QCD analysis of unpolarized and polarized Λ baryon production in leading and next-to-leading order, Phys. Rev. D 57 (1998) 5811 [hep-ph/9711387] [INSPIRE].
  79. [79]
    D. de Florian, M. Stratmann and W. Vogelsang, Polarized Λ baryon production in pp collisions, Phys. Rev. Lett. 81 (1998) 530 [hep-ph/9802432] [INSPIRE].
  80. [80]
    G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].
  81. [81]
    P. Breitenlohner and D. Maison, Dimensional renormalization and the action principle, Commun. Math. Phys. 52 (1977) 11 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  82. [82]
    J.C. Collins and J.-w. Qiu, A new derivation of the Altarelli-Parisi equations, Phys. Rev. D 39 (1989) 1398 [INSPIRE].ADSGoogle Scholar
  83. [83]
    A.V. Belitsky and E.A. Kuraev, Evolution of chiral odd spin independent fracture functions in quantum chromodynamics, Nucl. Phys. B 499 (1997) 301 [hep-ph/9612256] [INSPIRE].
  84. [84]
    Z.-B. Kang, QCD evolution of naive-time-reversal-odd fragmentation functions, Phys. Rev. D 83 (2011) 036006 [arXiv:1012.3419] [INSPIRE].ADSGoogle Scholar
  85. [85]
    J.P. Ma and G.P. Zhang, Evolution of chirality-odd twist-3 fragmentation functions, Phys. Lett. B 772 (2017) 559 [arXiv:1701.04141] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Division of SciencePenn State University BerksReadingU.S.A.
  2. 2.Department of Physics and AstronomyUniversity of CaliforniaLos AngelesU.S.A.
  3. 3.Mani L. Bhaumik Institute for Theoretical PhysicsUniversity of CaliforniaLos AngelesU.S.A.
  4. 4.Theoretical DivisionLos Alamos National LaboratoryLos AlamosU.S.A.
  5. 5.Department of PhysicsLebanon Valley CollegeAnnvilleU.S.A.
  6. 6.Department of PhysicsOld Dominion UniversityNorfolkU.S.A.
  7. 7.Department of PhysicsNew Mexico State UniversityLas CrucesU.S.A.

Personalised recommendations