Advertisement

Journal of High Energy Physics

, 2019:106 | Cite as

Global analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of θ23, δCP, and the mass ordering

  • Ivan Esteban
  • M. C. Gonzalez-Garcia
  • Alvaro Hernandez-Cabezudo
  • Michele MaltoniEmail author
  • Thomas Schwetz
Open Access
Regular Article - Theoretical Physics
  • 1 Downloads

Abstract

We present the results of a global analysis of the neutrino oscillation data available as of fall 2018 in the framework of three massive mixed neutrinos with the goal at determining the ranges of allowed values for the six relevant parameters. We describe the complementarity and quantify the tensions among the results of the different data samples contributing to the determination of each parameter. We also show how those vary when combining our global likelihood with the χ2 map provided by Super-Kamiokande for their atmospheric neutrino data analysis in the same framework. The best fit of the analysis is for the normal mass ordering with inverted ordering being disfavoured with a Δχ2 = 4.7 (9.3) without (with) SK-atm. We find a preference for the second octant of θ23, disfavouring the first octant with Δχ2 = 4.4 (6.0) without (with) SK-atm. The best fit for the complex phase is δCP = 215° with CP conservation being allowed at Δχ2 = 1.5 (1.8). As a byproduct we quantify the correlated ranges for the laboratory observables sensitive to the absolute neutrino mass scale in beta decay, \( {m}_{\nu_e} \) , and neutrino-less double beta decay, mee, and the total mass of the neutrinos, Σ, which is most relevant in Cosmology.

Keywords

Neutrino Physics Solar and Atmospheric Neutrinos 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    B. Pontecorvo, Neutrino Experiments and the Problem of Conservation of Leptonic Charge, Sov. Phys. JETP 26 (1968) 984 [INSPIRE].ADSGoogle Scholar
  2. [2]
    V.N. Gribov and B. Pontecorvo, Neutrino astronomy and lepton charge, Phys. Lett. B 28 (1969) 493 [INSPIRE].
  3. [3]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    M. Kobayashi and T. Maskawa, CP Violation in the Renormalizable Theory of Weak Interaction, Prog. Theor. Phys. 49 (1973) 652 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    N. Cabibbo, Time Reversal Violation in Neutrino Oscillation, Phys. Lett. B 72 (1978) 333 [INSPIRE].
  6. [6]
    S.M. Bilenky, J. Hosek and S.T. Petcov, On Oscillations of Neutrinos with Dirac and Majorana Masses, Phys. Lett. B 94 (1980) 495 [INSPIRE].
  7. [7]
    V.D. Barger, K. Whisnant and R.J.N. Phillips, CP Violation in Three Neutrino Oscillations, Phys. Rev. Lett. 45 (1980) 2084 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    P. Langacker, S.T. Petcov, G. Steigman and S. Toshev, On the Mikheev-Smirnov-Wolfenstein (MSW) Mechanism of Amplification of Neutrino Oscillations in Matter, Nucl. Phys. B 282 (1987) 589 [INSPIRE].
  9. [9]
    M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M.C. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 12 (2012) 123 [arXiv:1209.3023] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    Nufit webpage, http://www.nu-fit.org.
  13. [13]
    P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tortola and J.W.F. Valle, Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity, Phys. Lett. B 782 (2018) 633 [arXiv:1708.01186] [INSPIRE].
  14. [14]
    F. Capozzi, E. Lisi, A. Marrone and A. Palazzo, Current unknowns in the three neutrino framework, Prog. Part. Nucl. Phys. 102 (2018) 48 [arXiv:1804.09678] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    MINOS collaboration, Measurement of Neutrino and Antineutrino Oscillations Using Beam and Atmospheric Data in MINOS, Phys. Rev. Lett. 110 (2013) 251801 [arXiv:1304.6335] [INSPIRE].
  16. [16]
    MINOS collaboration, Electron neutrino and antineutrino appearance in the full MINOS data sample, Phys. Rev. Lett. 110 (2013) 171801 [arXiv:1301.4581] [INSPIRE].
  17. [17]
    T2K collaboration, Measurement of neutrino and antineutrino oscillations by the T2K experiment including a new additional sample of ν e interactions at the far detector, Phys. Rev. D 96 (2017) 092006 [Erratum ibid. D 98 (2018) 019902] [arXiv:1707.01048] [INSPIRE].
  18. [18]
    T2K collaboration, Search for CP-violation in Neutrino and Antineutrino Oscillations by the T2K Experiment with 2.2 × 1021 Protons on Target, Phys. Rev. Lett. 121 (2018) 171802 [arXiv:1807.07891] [INSPIRE].
  19. [19]
    NOvA collaboration, Constraints on Oscillation Parameters from ν e Appearance and ν μ Disappearance in NOvA, Phys. Rev. Lett. 118 (2017) 231801 [arXiv:1703.03328] [INSPIRE].
  20. [20]
    NOvA collaboration, New constraints on oscillation parameters from ν e appearance and ν μ disappearance in the NOvA experiment, Phys. Rev. D 98 (2018) 032012 [arXiv:1806.00096] [INSPIRE].
  21. [21]
    Daya Bay collaboration, Measurement of electron antineutrino oscillation with 1958 days of operation at Daya Bay, Phys. Rev. Lett. 121 (2018) 241805 [arXiv:1809.02261] [INSPIRE].
  22. [22]
    RENO collaboration, Measurement of Reactor Antineutrino Oscillation Amplitude and Frequency at RENO, Phys. Rev. Lett. 121 (2018) 201801 [arXiv:1806.00248] [INSPIRE].
  23. [23]
    Double CHOOZ collaboration, Improved measurements of the neutrino mixing angle θ 13 with the Double CHOOZ detector, JHEP 10 (2014) 086 [Erratum ibid. 02 (2015) 074] [arXiv:1406.7763] [INSPIRE].
  24. [24]
    M. Dentler, Á. Hernández-Cabezudo, J. Kopp, M. Maltoni and T. Schwetz, Sterile neutrinos or flux uncertainties? — Status of the reactor anti-neutrino anomaly, JHEP 11 (2017) 099 [arXiv:1709.04294] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    Daya Bay collaboration, Improved Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay, Chin. Phys. C 41 (2017) 013002 [arXiv:1607.05378] [INSPIRE].
  26. [26]
    Borexino collaboration, Comprehensive measurement of pp-chain solar neutrinos, Nature 562 (2018) 505 [INSPIRE].
  27. [27]
    IceCube collaboration, Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data, Phys. Rev. D 91 (2015) 072004 [arXiv:1410.7227] [INSPIRE].
  28. [28]
    IceCube collaboration, IceCube Oscillations: 3 years muon neutrino disappearance data, http://icecube.wisc.edu/science/data/nu_osc.
  29. [29]
    Super-Kamiokande collaboration, Atmospheric neutrino oscillation analysis with external constraints in Super-Kamiokande I-IV, Phys. Rev. D 97 (2018) 072001 [arXiv:1710.09126] [INSPIRE].
  30. [30]
    SuperKamiokande collaboration, Atmospheric neutrino oscillation analysis with external constraints in Super-Kamiokande I-IV, link to data release: http://www-sk.icrr.u-tokyo.ac.jp/sk/publications/result-e.html#atmosci2018 (2018).
  31. [31]
    IceCube collaboration, Measurement of Atmospheric Neutrino Oscillations at 6-56 GeV with IceCube DeepCore, Phys. Rev. Lett. 120 (2018) 071801 [arXiv:1707.07081] [INSPIRE].
  32. [32]
    J. Elevant and T. Schwetz, On the determination of the leptonic CP phase, JHEP 09 (2015) 016 [arXiv:1506.07685] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    M.C. Gonzalez-Garcia and C. Pena-Garay, Three neutrino mixing after the first results from K2K and KamLAND, Phys. Rev. D 68 (2003) 093003 [hep-ph/0306001] [INSPIRE].
  34. [34]
    P.I. Krastev and S.T. Petcov, Resonance Amplification and t Violation Effects in Three Neutrino Oscillations in the Earth, Phys. Lett. B 205 (1988) 84 [INSPIRE].
  35. [35]
    C. Jarlskog, Commutator of the Quark Mass Matrices in the Standard Electroweak Model and a Measure of Maximal CP-violation, Phys. Rev. Lett. 55 (1985) 1039 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  37. [37]
    J. Bergstrom, M.C. Gonzalez-Garcia, M. Maltoni, C. Pena-Garay, A.M. Serenelli and N. Song, Updated determination of the solar neutrino fluxes from solar neutrino data, JHEP 03 (2016) 132 [arXiv:1601.00972] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    N. Vinyoles et al., A new Generation of Standard Solar Models, Astrophys. J. 835 (2017) 202 [arXiv:1611.09867] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    L. Wolfenstein, Neutrino Oscillations in Matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE].
  40. [40]
    S.P. Mikheyev and A. Yu. Smirnov, Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos, Sov. J. Nucl. Phys. 42 (1985) 913 [INSPIRE].Google Scholar
  41. [41]
    M. Ikeda, Solar neutrino measurements with Super-Kamiokande, talk given at the XXVIII International Conference on Neutrino Physics and Astrophysics, Heidelberg, Germany, June 4-9, 2018.Google Scholar
  42. [42]
    Y. Nakano, 8 B solar neutrino spectrum measurement using Super-Kamiokande IV, Ph.D. Thesis, Tokyo U. (2016).Google Scholar
  43. [43]
    N. Okamura, Effect of the smaller mass-squared difference for the long base-line neutrino experiments, Prog. Theor. Phys. 114 (2006) 1045 [hep-ph/0411388] [INSPIRE].
  44. [44]
    H. Nunokawa, S.J. Parke and R. Zukanovich Funchal, Another possible way to determine the neutrino mass hierarchy, Phys. Rev. D 72 (2005) 013009 [hep-ph/0503283] [INSPIRE].
  45. [45]
    M. Wascko, T2k status, results, and plans, June 2018 [ https://doi.org/10.5281/zenodo.1286752].
  46. [46]
    M. Sanchez, Nova results and prospects, June 2018 [ https://doi.org/10.5281/zenodo.1286758].
  47. [47]
    V.D. Barger, K. Whisnant, S. Pakvasa and R.J.N. Phillips, Matter Effects on Three-Neutrino Oscillations, Phys. Rev. D 22 (1980) 2718 [INSPIRE].
  48. [48]
    H. Minakata, H. Nunokawa, S.J. Parke and R. Zukanovich Funchal, Determining neutrino mass hierarchy by precision measurements in electron and muon neutrino disappearance experiments, Phys. Rev. D 74 (2006) 053008 [hep-ph/0607284] [INSPIRE].
  49. [49]
    M. Blennow and T. Schwetz, Determination of the neutrino mass ordering by combining PINGU and Daya Bay II, JHEP 09 (2013) 089 [arXiv:1306.3988] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    IceCube collaboration, Measurement of atmospheric neutrino oscillations with three years of data from the full sky, https://icecube.wisc.edu/science/data/2018nuosc (2018).
  51. [51]
    F. Halzen, Conclusion: how the past history can shed light on the future of neutrinos, talk given at the History of the Neutrino Conference, Paris, France, September 5-7, 2018.Google Scholar
  52. [52]
    J. Bonn et al., The Mainz neutrino mass experiment, Nucl. Phys. Proc. Suppl. 91 (2001) 273 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    KATRIN collaboration, KATRIN: A Next generation tritium beta decay experiment with sub-eV sensitivity for the electron neutrino mass. Letter of intent, hep-ex/0109033 [INSPIRE].
  54. [54]
    GERDA collaboration, Improved Limit on Neutrinoless Double-β Decay of 76 Ge from GERDA Phase II, Phys. Rev. Lett. 120 (2018) 132503 [arXiv:1803.11100] [INSPIRE].
  55. [55]
    KamLAND-Zen collaboration, Search for Majorana Neutrinos near the Inverted Mass Hierarchy Region with KamLAND-Zen, Phys. Rev. Lett. 117 (2016) 082503 [arXiv:1605.02889] [INSPIRE].
  56. [56]
    J.J. Gomez-Cadenas, J. Martin-Albo, M. Mezzetto, F. Monrabal and M. Sorel, The Search for neutrinoless double beta decay, Riv. Nuovo Cim. 35 (2012) 29 [arXiv:1109.5515] [INSPIRE].Google Scholar
  57. [57]
    G.L. Fogli et al., Observables sensitive to absolute neutrino masses: Constraints and correlations from world neutrino data, Phys. Rev. D 70 (2004) 113003 [hep-ph/0408045] [INSPIRE].
  58. [58]
    S. Pascoli, S.T. Petcov and T. Schwetz, The Absolute neutrino mass scale, neutrino mass spectrum, Majorana CP-violation and neutrinoless double-beta decay, Nucl. Phys. B 734 (2006) 24 [hep-ph/0505226] [INSPIRE].
  59. [59]
    B.T. Cleveland et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector, Astrophys. J. 496 (1998) 505 [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    F. Kaether, W. Hampel, G. Heusser, J. Kiko and T. Kirsten, Reanalysis of the GALLEX solar neutrino flux and source experiments, Phys. Lett. B 685 (2010) 47 [arXiv:1001.2731] [INSPIRE].
  61. [61]
    SAGE collaboration, Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002-2007 data-taking period, Phys. Rev. C 80 (2009) 015807 [arXiv:0901.2200] [INSPIRE].
  62. [62]
    Super-Kamiokande collaboration, Solar neutrino measurements in Super-Kamiokande-I, Phys. Rev. D 73 (2006) 112001 [hep-ex/0508053] [INSPIRE].
  63. [63]
    Super-Kamiokande collaboration, Solar neutrino measurements in Super-Kamiokande-II, Phys. Rev. D 78 (2008) 032002 [arXiv:0803.4312] [INSPIRE].
  64. [64]
    Super-Kamiokande collaboration, Solar neutrino results in Super-Kamiokande-III, Phys. Rev. D 83 (2011) 052010 [arXiv:1010.0118] [INSPIRE].
  65. [65]
    SNO collaboration, Combined Analysis of all Three Phases of Solar Neutrino Data from the Sudbury Neutrino Observatory, Phys. Rev. C 88 (2013) 025501 [arXiv:1109.0763] [INSPIRE].
  66. [66]
    G. Bellini et al., Precision measurement of the 7Be solar neutrino interaction rate in Borexino, Phys. Rev. Lett. 107 (2011) 141302 [arXiv:1104.1816] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    Borexino collaboration, Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector, Phys. Rev. D 82 (2010) 033006 [arXiv:0808.2868] [INSPIRE].
  68. [68]
    Borexino collaboration, Neutrinos from the primary proton-proton fusion process in the Sun, Nature 512 (2014) 383 [INSPIRE].
  69. [69]
    M. Honda, M. Sajjad Athar, T. Kajita, K. Kasahara and S. Midorikawa, Atmospheric neutrino flux calculation using the NRLMSISE-00 atmospheric model, Phys. Rev. D 92 (2015) 023004 [arXiv:1502.03916] [INSPIRE].
  70. [70]
    KamLAND collaboration, Reactor On-Off Antineutrino Measurement with KamLAND, Phys. Rev. D 88 (2013) 033001 [arXiv:1303.4667] [INSPIRE].
  71. [71]
    A. Cabrera Serra, Double Chooz Improved Multi-Detector Measurements, talk given at the CERN EP colloquium, CERN, Switzerland, September 20, 2016.Google Scholar
  72. [72]
    A. Izmaylov, T2K Neutrino Experiment. Recent Results and Plans, talk given at the Flavour Physics Conference, Quy Nhon, Vietnam, August 13-19, 2017.Google Scholar
  73. [73]
    T. Koga, Measurement of neutrino interactions on water and search for electron anti-neutrino appearance in the T2K experiment, Ph.D. Thesis, Tokyo U. (2018) [https://www.t2k.org/docs/thesis/090/Doctor%20thesis].
  74. [74]
    S. Dennis, Muon Antineutrino Disappearance and Non-Standard Interactions at the T2K Experiment, Ph.D. Thesis, Warwick U. (2015).Google Scholar
  75. [75]
    M. BAIRD, Reconstructing Neutrino Energies with the NOvA Detectors, June, 2018 [ https://doi.org/10.5281/zenodo.1301120].
  76. [76]
    A. Himmel, First Oscillation Results with Neutrino and Antineutrino Beams in NOvA, talk given at the Joint Theoretical-Experimental Physics Seminar, Fermilab, U.S.A., June 15, 2018.Google Scholar
  77. [77]
    Daya Bay collaboration, Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment, Phys. Rev. D 95 (2017) 072006 [arXiv:1610.04802] [INSPIRE].
  78. [78]
    P. Vogel and J.F. Beacom, Angular distribution of neutron inverse beta decay, \( \overline{\nu}e+p\to {e}^{+}+n \), Phys. Rev. D 60 (1999) 053003 [hep-ph/9903554] [INSPIRE].
  79. [79]
    P. Huber, On the determination of anti-neutrino spectra from nuclear reactors, Phys. Rev. C 84 (2011) 024617 [Erratum ibid. C 85 (2012) 029901] [arXiv:1106.0687] [INSPIRE].
  80. [80]
    T.A. Mueller et al., Improved Predictions of Reactor Antineutrino Spectra, Phys. Rev. C 83 (2011) 054615 [arXiv:1101.2663] [INSPIRE].
  81. [81]
    RENO collaboration, Fuel-composition dependent reactor antineutrino yield and spectrum at RENO, arXiv:1806.00574 [INSPIRE].
  82. [82]
    RENO collaboration, RENO: An Experiment for Neutrino Oscillation Parameter θ 13 Using Reactor Neutrinos at Yonggwang, arXiv:1003.1391 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Departament de Física Quàntica i Astrofísica and Institut de Ciencies del CosmosUniversitat de BarcelonaBarcelonaSpain
  2. 2.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
  3. 3.C.N. Yang Institute for Theoretical PhysicsState University of New York at Stony BrookStony BrookU.S.A.
  4. 4.Institut für Kernphysik, Karlsruher Institut für Technologie (KIT)KarlsruheGermany
  5. 5.Instituto de Física Teórica UAM/CSICUniversidad Autónoma de MadridMadridSpain

Personalised recommendations