Advertisement

Mass spectrum of 2-dimensional \( \mathcal{N}=\left(2,2\right) \) super Yang-Mills theory on the lattice

  • D. August
  • M. Steinhauser
  • B. H. WellegehausenEmail author
  • A. Wipf
Open Access
Regular Article - Theoretical Physics
  • 18 Downloads

Abstract

In the present work we analyse \( \mathcal{N}=\left(2,2\right) \) supersymmetric Yang-Mills (SYM) theory with gauge group SU(2) in two dimensions by means of lattice simulations. The theory arises as dimensional reduction of \( \mathcal{N}=1 \) SYM theory in four dimensions. As in other gauge theories with extended supersymmetry, the classical scalar potential has flat directions which may destabilize numerical simulations. In addition, the fermion determinant need not be positive and this sign-problem may cause further problems in a stochastic treatment. We demonstrate that \( \mathcal{N}=\left(2,2\right) \) super Yang-Mills theory has actually no sign problem and that the flat directions are lifted and thus stabilized by quantum corrections. Only the bare masses of the scalars experience a finite additive renormalization in this finite theory. On various lattices with different lattice constants we determine the scalar masses and hopping parameters for which the supersymmetry violating terms are minimal. By studying four Ward identities and by monitoring the π-mass we show that supersymmetry is indeed restored in the continuum limit. In the second part we calculate the masses of the low-lying bound states. We find that in the infinite-volume and supersymmetric continuum limit the Veneziano-Yankielowicz super-multiplet becomes massless and the Farrar-Gabadadze-Schwetz super-multiplet decouples from the theory. In addition, we estimate the masses of the excited mesons in the Veneziano-Yankielowicz multiplet. We observe that the gluino-glueballs have comparable masses to the excited mesons.

Keywords

Supersymmetric Gauge Theory Extended Supersymmetry Field Theories in Lower Dimensions Lattice Quantum Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Salam and J.A. Strathdee, Supersymmetry and non-Abelian gauges, Phys. Lett. B 51 (1974) 353 [INSPIRE].
  2. [2]
    S. Ferrara and B. Zumino, Supergauge invariant Yang-Mills theories, Nucl. Phys. B 79 (1974) 413 [INSPIRE].
  3. [3]
    D. Amati, K. Konishi, Y. Meurice, G.C. Rossi and G. Veneziano, Nonperturbative aspects in supersymmetric gauge theories, Phys. Rept. 162 (1988) 169 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    G. Veneziano and S. Yankielowicz, An effective Lagrangian for the pure N = 1 supersymmetric Yang-Mills theory, Phys. Lett. B 113 (1982) 231 [INSPIRE].
  5. [5]
    G.R. Farrar, G. Gabadadze and M. Schwetz, The spectrum of softly broken N = 1 supersymmetric Yang-Mills theory, Phys. Rev. D 60 (1999) 035002 [hep-th/9806204] [INSPIRE].
  6. [6]
    G.R. Farrar, G. Gabadadze and M. Schwetz, On the effective action of N = 1 supersymmetric Yang-Mills theory, Phys. Rev. D 58 (1998) 015009 [hep-th/9711166] [INSPIRE].
  7. [7]
    A. Feo, P. Merlatti and F. Sannino, Information on the super Yang-Mills spectrum, Phys. Rev. D 70 (2004) 096004 [hep-th/0408214] [INSPIRE].
  8. [8]
    G. Curci and G. Veneziano, Supersymmetry and the lattice: a reconciliation?, Nucl. Phys. B 292 (1987) 555 [INSPIRE].
  9. [9]
    J. Giedt, R. Brower, S. Catterall, G.T. Fleming and P. Vranas, Lattice super-Yang-Mills using domain wall fermions in the chiral limit, Phys. Rev. D 79 (2009) 025015 [arXiv:0810.5746] [INSPIRE].
  10. [10]
    M.G. Endres, Dynamical simulation of N = 1 supersymmetric Yang-Mills theory with domain wall fermions, Phys. Rev. D 79 (2009) 094503 [arXiv:0902.4267] [INSPIRE].
  11. [11]
    JLQCD collaboration, Lattice study of 4d N = 1 super Yang-Mills theory with dynamical overlap gluino, PoS(LATTICE2011)069 (2011) [arXiv:1111.2180] [INSPIRE].
  12. [12]
    I. Montvay, SUSY on the lattice, Nucl. Phys. Proc. Suppl. 63 (1998) 108 [hep-lat/9709080] [INSPIRE].
  13. [13]
    DESY-Munster collaboration, Monte Carlo simulation of SU(2) Yang-Mills theory with light gluinos, Eur. Phys. J. C 11 (1999) 507 [hep-lat/9903014] [INSPIRE].
  14. [14]
    DESY-Munster-Roma collaboration, The supersymmetric Ward identities on the lattice, Eur. Phys. J. C 23 (2002) 719 [hep-lat/0111008] [INSPIRE].
  15. [15]
    I. Montvay, Supersymmetric Yang-Mills theory on the lattice, Int. J. Mod. Phys. A 17 (2002) 2377 [hep-lat/0112007] [INSPIRE].
  16. [16]
    G. Münster and H. Stüwe, The mass of the adjoint pion in N = 1 supersymmetric Yang-Mills theory, JHEP 05 (2014) 034 [arXiv:1402.6616] [INSPIRE].
  17. [17]
    G. Bergner, P. Giudice, G. Münster, S. Piemonte and D. Sandbrink, Phase structure of the N = 1 supersymmetric Yang-Mills theory at finite temperature, JHEP 11 (2014) 049 [arXiv:1405.3180] [INSPIRE].
  18. [18]
    G. Bergner and S. Piemonte, Compactified N = 1 supersymmetric Yang-Mills theory on the lattice: continuity and the disappearance of the deconfinement transition, JHEP 12 (2014) 133 [arXiv:1410.3668] [INSPIRE].
  19. [19]
    G. Bergner, P. Giudice, G. Münster, I. Montvay and S. Piemonte, The light bound states of supersymmetric SU(2) Yang-Mills theory, JHEP 03 (2016) 080 [arXiv:1512.07014] [INSPIRE].
  20. [20]
    S. Ali et al., The light bound states of N = 1 supersymmetric SU(3) Yang-Mills theory on the lattice, JHEP 03 (2018) 113 [arXiv:1801.08062] [INSPIRE].
  21. [21]
    M. Steinhauser, A. Sternbeck, B. Wellegehausen and A. Wipf, Spectroscopy of four-dimensional N = 1 supersymmetric SU(3) Yang-Mills theory, EPJ Web Conf. 175 (2018) 08022 [arXiv:1711.05086] [INSPIRE].
  22. [22]
    H. Suzuki and Y. Taniguchi, Two-dimensional N = (2, 2) super Yang-Mills theory on the lattice via dimensional reduction, JHEP 10 (2005) 082 [hep-lat/0507019] [INSPIRE].
  23. [23]
    H. Fukaya, I. Kanamori, H. Suzuki and T. Takimi, Numerical results of two-dimensional N = (2, 2) super Yang-Mills theory,PoS(LATTICE2007)264(2007)[arXiv:0709.4076] [INSPIRE].
  24. [24]
    E. Witten, Bound states of strings and p-branes, Nucl. Phys. B 460 (1996) 335 [hep-th/9510135] [INSPIRE].
  25. [25]
    H. Fukaya, I. Kanamori, H. Suzuki, M. Hayakawa and T. Takimi, Note on massless bosonic states in two-dimensional field theories, Prog. Theor. Phys. 116 (2007) 1117 [hep-th/0609049] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    F. Antonuccio, H.C. Pauli, S. Pinsky and S. Tsujimaru, DLCQ bound states of N = (2, 2) super Yang-Mills at finite and large N, Phys. Rev. D 58 (1998) 125006 [hep-th/9808120] [INSPIRE].
  27. [27]
    M. Harada, J.R. Hiller, S. Pinsky and N. Salwen, Improved results for N = (2, 2) super Yang-Mills theory using supersymmetric discrete light-cone quantization, Phys. Rev. D 70 (2004) 045015 [hep-th/0404123] [INSPIRE].
  28. [28]
    K. Hori and D. Tong, Aspects of non-Abelian gauge dynamics in two-dimensional N = (2, 2) theories, JHEP 05 (2007) 079 [hep-th/0609032] [INSPIRE].
  29. [29]
    S. Catterall, R.G. Jha and A. Joseph, Nonperturbative study of dynamical SUSY breaking in N = (2, 2) Yang-Millstheory, Phys.Rev. D 97 (2018) 054504 [arXiv:1801.00012] [INSPIRE].
  30. [30]
    T. Kastner, G. Bergner, S. Uhlmann, A. Wipf and C. Wozar, Two-dimensional Wess-Zumino models at intermediate couplings, Phys. Rev. D 78 (2008) 095001 [arXiv:0807.1905] [INSPIRE].
  31. [31]
    A.G. Cohen, D.B. Kaplan, E. Katz and M. Ünsal, Supersymmetry on a Euclidean space-time lattice. 2. Target theories with eight supercharges, JHEP 12 (2003) 031 [hep-lat/0307012] [INSPIRE].
  32. [32]
    S. Catterall, A geometrical approach to N = 2 super Yang-Mills theory on the two dimensional lattice, JHEP 11 (2004) 006 [hep-lat/0410052] [INSPIRE].
  33. [33]
    F. Sugino, A lattice formulation of super Yang-Mills theories with exact supersymmetry, JHEP 01 (2004) 015 [hep-lat/0311021] [INSPIRE].
  34. [34]
    S. Matsuura and F. Sugino, Lattice formulation for 2d N = (2, 2), (4, 4) super Yang-Mills theories without admissibility conditions, JHEP 04 (2014) 088 [arXiv:1402.0952] [INSPIRE].
  35. [35]
    S. Catterall, Simulations of N = 2 super Yang-Mills theory in two dimensions, JHEP 03 (2006) 032 [hep-lat/0602004] [INSPIRE].
  36. [36]
    S. Catterall, First results from simulations of supersymmetric lattices, JHEP 01 (2009) 040 [arXiv:0811.1203] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    I. Kanamori and H. Suzuki, Restoration of supersymmetry on the lattice: two-dimensional N = (2, 2) supersymmetric Yang-Mills theory, Nucl. Phys. B 811 (2009) 420 [arXiv:0809.2856] [INSPIRE].
  38. [38]
    H. Suzuki, Two-dimensional N = (2, 2) super Yang-Mills theory on computer, JHEP 09 (2007) 052 [arXiv:0706.1392] [INSPIRE].
  39. [39]
    I. Kanamori and H. Suzuki, Some physics of the two-dimensional N = (2, 2) supersymmetric Yang-Mills theory: lattice Monte Carlo study, Phys. Lett. B 672 (2009) 307 [arXiv:0811.2851] [INSPIRE].
  40. [40]
    I. Kanamori, F. Sugino and H. Suzuki, Observing dynamical supersymmetry breaking with euclidean lattice simulations, Prog. Theor. Phys. 119 (2008) 797 [arXiv:0711.2132] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    D. Kadoh and H. Suzuki, SUSY WT identity in a lattice formulation of 2D N = (2, 2) SYM, Phys. Lett. B 682 (2010) 466 [arXiv:0908.2274] [INSPIRE].
  42. [42]
    T. Takimi, Relationship between various supersymmetric lattice models, JHEP 07 (2007) 010 [arXiv:0705.3831] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    P.H. Damgaard and S. Matsuura, Lattice supersymmetry: equivalence between the link approach and orbifolding, JHEP 09 (2007) 097 [arXiv:0708.4129] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    P.H. Damgaard and S. Matsuura, Relations among supersymmetric lattice gauge theories via orbifolding, JHEP 08 (2007) 087 [arXiv:0706.3007] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    M. Ünsal, Twisted supersymmetric gauge theories and orbifold lattices, JHEP 10 (2006) 089 [hep-th/0603046] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  46. [46]
    D.B. Kaplan, Recent developments in lattice supersymmetry, Nucl. Phys. Proc. Suppl. 129 (2004) 109 [hep-lat/0309099] [INSPIRE].
  47. [47]
    J. Giedt, Deconstruction and other approaches to supersymmetric lattice field theories, Int. J. Mod. Phys. A 21 (2006) 3039 [hep-lat/0602007] [INSPIRE].
  48. [48]
    S. Catterall, D.B. Kaplan and M. Ünsal, Exact lattice supersymmetry, Phys. Rept. 484 (2009) 71 [arXiv:0903.4881] [INSPIRE].
  49. [49]
    A. Joseph, Supersymmetric Yang-Mills theories with exact supersymmetry on the lattice, Int. J. Mod. Phys. A 26 (2011) 5057 [arXiv:1110.5983] [INSPIRE].
  50. [50]
    G. Bergner and S. Catterall, Supersymmetry on the lattice, Int. J. Mod. Phys. A 31 (2016) 1643005 [arXiv:1603.04478] [INSPIRE].
  51. [51]
    S. Matsuura, T. Misumi and K. Ohta, Topologically twisted N = (2, 2) supersymmetric Yang-Mills theory on an arbitrary discretized Riemann surface, PTEP 2014 (2014) 123B01 [arXiv:1408.6998] [INSPIRE].
  52. [52]
    S. Kamata, S. Matsuura, T. Misumi and K. Ohta, Anomaly and sign problem in N = (2, 2) SYM on polyhedra: numerical analysis, PTEP 2016 (2016) 123B01 [arXiv:1607.01260] [INSPIRE].
  53. [53]
    S. Kamata, S. Matsuura, T. Misumi and K. Ohta, Numerical analysis of discretized N = (2, 2) SYM on polyhedra, PoS(LATTICE2016)210 (2016) [arXiv:1612.01968] [INSPIRE].
  54. [54]
    M. Hanada and I. Kanamori, Lattice study of two-dimensional N = (2, 2) super Yang-Mills at large-N, Phys. Rev. D 80 (2009) 065014 [arXiv:0907.4966] [INSPIRE].
  55. [55]
    M. Hanada and I. Kanamori, Absence of sign problem in two-dimensional N = (2, 2) super Yang-Mills on lattice, JHEP 01 (2011) 058 [arXiv:1010.2948] [INSPIRE].
  56. [56]
    I. Montvay, Majorana fermions on the lattice, hep-lat/0108011 [INSPIRE].
  57. [57]
    H. Nicolai, A possible constructive approach to (super-ϕ 3 ) in four-dimensions. 1. Euclidean formulation of the model, Nucl. Phys. B 140 (1978) 294 [INSPIRE].
  58. [58]
    P. van Nieuwenhuizen and A. Waldron, On Euclidean spinors and Wick rotations, Phys. Lett. B 389 (1996) 29 [hep-th/9608174] [INSPIRE].
  59. [59]
    M. Lüscher and P. Weisz, On-shell improved lattice gauge theories, Commun. Math. Phys. 97 (1985) 59 [Erratum ibid. 98 (1985) 433] [INSPIRE].
  60. [60]
    A.D. Kennedy, I. Horvath and S. Sint, A new exact method for dynamical fermion computations with nonlocal actions, Nucl. Phys. Proc. Suppl. 73 (1999) 834 [hep-lat/9809092] [INSPIRE].
  61. [61]
    M.A. Clark and A.D. Kennedy, The RHMC algorithm for two flavors of dynamical staggered fermions, Nucl. Phys. Proc. Suppl. 129 (2004) 850 [hep-lat/0309084] [INSPIRE].
  62. [62]
    M.A. Clark, P. de Forcrand and A.D. Kennedy, Algorithm shootout: R versus RHMC, PoS(LAT2005)115 (2006) [hep-lat/0510004] [INSPIRE].
  63. [63]
    M.A. Clark, The rational hybrid Monte Carlo algorithm, PoS(LAT2006)004 (2006) [hep-lat/0610048] [INSPIRE].
  64. [64]
    D. August, B. Wellegehausen and A. Wipf, Spectroscopy of two dimensional N = 2 super Yang-Mills theory, PoS(LATTICE2016)234 (2016) [arXiv:1611.00551] [INSPIRE].
  65. [65]
    A. Donini, M. Guagnelli, P. Hernández and A. Vladikas, Quenched spectroscopy for the N = 1 super Yang-Mills theory, Nucl. Phys. Proc. Suppl. 63 (1998) 718 [hep-lat/9708006] [INSPIRE].
  66. [66]
    D.J. Gross, I.R. Klebanov, A.V. Matytsin and A.V. Smilga, Screening versus confinement in (1 + 1)-dimensions, Nucl. Phys. B 461 (1996) 109 [hep-th/9511104] [INSPIRE].
  67. [67]
    A. Armoni, Y. Frishman and J. Sonnenschein, Screening in supersymmetric gauge theories in two-dimensions, Phys. Lett. B 449 (1999) 76 [hep-th/9807022] [INSPIRE].
  68. [68]
    M. Lüscher and P. Weisz, Locality and exponential error reduction in numerical lattice gauge theory, JHEP 09 (2001) 010 [hep-lat/0108014] [INSPIRE].
  69. [69]
    B.H. Wellegehausen, A. Wipf and C. Wozar, Casimir scaling and string breaking in G 2 gluodynamics, Phys. Rev. D 83 (2011) 016001 [arXiv:1006.2305] [INSPIRE].
  70. [70]
    R. Sommer, A new way to set the energy scale in lattice gauge theories and its applications to the static force and α s in SU(2) Yang-Mills theory, Nucl. Phys. B 411 (1994) 839 [hep-lat/9310022] [INSPIRE].
  71. [71]
    C. Morningstar and M.J. Peardon, Analytic smearing of SU(3) link variables in lattice QCD, Phys. Rev. D 69 (2004) 054501 [hep-lat/0311018] [INSPIRE].
  72. [72]
    S. Gusken, U. Low, K.H. Mutter, R. Sommer, A. Patel and K. Schilling, Nonsinglet axial vector couplings of the baryon octet in lattice QCD, Phys. Lett. B 227 (1989) 266 [INSPIRE].
  73. [73]
    UKQCD collaboration, Gauge invariant smearing and matrix correlators using Wilson fermions at β = 6.2, Phys. Rev. D 47 (1993) 5128 [hep-lat/9303009] [INSPIRE].
  74. [74]
    Y. Taniguchi, One loop calculation of SUSY Ward-Takahashi identity on lattice with Wilson fermion, Phys. Rev. D 63 (2000) 014502 [hep-lat/9906026] [INSPIRE].
  75. [75]
    S. Luckmann, Ward-Identitäten in der N = 1 super-Yang-Mills-Theorie (in German), Diplomarbeit, University of Münster, Münster, Germany (1997).Google Scholar
  76. [76]
    T. Galla, Supersymmetrische und Chirale Ward-Identitäten in einer diskretisierten N = 1-SUSY-Yang-Mills-Theorie (inGerman),Diplomarbeit,UniversityofMünster, Münster, Germany (1999).Google Scholar
  77. [77]
    G. Munster, The size of finite size effects in lattice gauge theories, Nucl. Phys. B 249 (1985) 659 [INSPIRE].
  78. [78]
    M. Lüscher, Volume dependence of the energy spectrum in massive quantum field theories. 1. Stable particle states, Commun. Math. Phys. 104 (1986) 177 [INSPIRE].
  79. [79]
    A.A. Migdal, Recursion equations in gauge theories, Sov. Phys. JETP 42 (1975) 413 [Zh. Eksp. Teor. Fiz. 69 (1975) 810] [INSPIRE].
  80. [80]
    N.E. Bralic, Exact computation of loop averages in two-dimensional Yang-Mills theory, Phys. Rev. D 22 (1980) 3090 [INSPIRE].
  81. [81]
    S. Catterall, R. Galvez, A. Joseph and D. Mehta, On the sign problem in 2D lattice super Yang-Mills, JHEP 01 (2012) 108 [arXiv:1112.3588] [INSPIRE].
  82. [82]
    S. Catterall, R.G. Jha, D. Schaich and T. Wiseman, Testing holography using lattice super-Yang-Mills theory on a 2-torus, Phys. Rev. D 97 (2018) 086020 [arXiv:1709.07025] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • D. August
    • 1
  • M. Steinhauser
    • 1
  • B. H. Wellegehausen
    • 1
    Email author
  • A. Wipf
    • 1
  1. 1.Theoretisch-Physikalisches InstitutFriedrich-Schiller University JenaJenaGermany

Personalised recommendations