Advertisement

Generalized Gibbs Ensemble of 2d CFTs at large central charge in the thermodynamic limit

  • Anatoly DymarskyEmail author
  • Kirill Pavlenko
Open Access
Regular Article - Theoretical Physics
  • 20 Downloads

Abstract

We discuss partition function of 2d CFTs decorated by higher qKdV charges in the thermodynamic limit when the size of the spatial circle goes to infinity. In this limit the saddle point approximation is exact and at infinite central charge generalized partition function can be calculated explicitly. We show that leading 1/c corrections to free energy can be reformulated as a sum over Young tableaux which we calculate for the first two qKdV charges. Next, we compare generalized ensemble with the “eigenstate ensemble” that consists of a single primary state. At infinite central charge the ensembles match at the level of expectation values of local operators for any values of qKdV fugacities. When the central charge is large but finite, for any values of the fugacities the aforementioned ensembles are distinguishable.

Keywords

Conformal Field Models in String Theory Conformal Field Theory Conformal and W Symmetry Holography and condensed matter physics (AdS/CMT) 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P. Calabrese and J. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. 04 (2005) P04010 [cond-mat/0503393] [INSPIRE].
  2. [2]
    P. Calabrese and J. Cardy, Time-dependence of correlation functions following a quantum quench, Phys. Rev. Lett. 96 (2006) 136801 [cond-mat/0601225] [INSPIRE].
  3. [3]
    P. Calabrese and J. Cardy, Quantum Quenches in Extended Systems, J. Stat. Mech. 06 (2007) P06008 [arXiv:0704.1880] [INSPIRE].
  4. [4]
    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of Long-Distance AdS Physics from the CFT Bootstrap, JHEP 08 (2014) 145 [arXiv:1403.6829] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Virasoro Conformal Blocks and Thermality from Classical Background Fields, JHEP 11 (2015) 200 [arXiv:1501.05315] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    A.L. Fitzpatrick, J. Kaplan, D. Li and J. Wang, On information loss in AdS 3 /CF T 2, JHEP 05 (2016) 109 [arXiv:1603.08925] [INSPIRE].
  9. [9]
    A.L. Fitzpatrick and J. Kaplan, Conformal Blocks Beyond the Semi-Classical Limit, JHEP 05 (2016) 075 [arXiv:1512.03052] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    T. Anous, T. Hartman, A. Rovai and J. Sonner, Black Hole Collapse in the 1/c Expansion, JHEP 07 (2016) 123 [arXiv:1603.04856] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    H. Chen, C. Hussong, J. Kaplan and D. Li, A Numerical Approach to Virasoro Blocks and the Information Paradox, JHEP 09 (2017) 102 [arXiv:1703.09727] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    A.L. Fitzpatrick, J. Kaplan, D. Li and J. Wang, Exact Virasoro Blocks from Wilson Lines and Background-Independent Operators, JHEP 07 (2017) 092 [arXiv:1612.06385] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    A.L. Fitzpatrick and J. Kaplan, On the Late-Time Behavior of Virasoro Blocks and a Classification of Semiclassical Saddles, JHEP 04 (2017) 072 [arXiv:1609.07153] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    T. Faulkner and H. Wang, Probing beyond ETH at large c, JHEP 06 (2018) 123 [arXiv:1712.03464] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Green, J. Schwarz and E. Witten, Superstring Theory. Vol. 2: Loop Amplitudes, Anomalies And Phenomenology, Cambridge University Press (1987) [INSPIRE].
  16. [16]
    P. Francesco, P. Mathieu and D. Sénéchal, Conformal field theory, Springer Science & Business Media (2012).Google Scholar
  17. [17]
    V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz, Commun. Math. Phys. 177 (1996) 381 [hep-th/9412229] [INSPIRE].
  18. [18]
    V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory. 2. Q operator and DDV equation, Commun. Math. Phys. 190 (1997) 247 [hep-th/9604044] [INSPIRE].
  19. [19]
    V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory. 3. The Yang-Baxter relation, Commun. Math. Phys. 200 (1999) 297 [hep-th/9805008] [INSPIRE].
  20. [20]
    E.H. Mingo, Y. Guryanova, P. Faist and D. Jennings, Quantum thermodynamics with multiple conserved quantities, arXiv:1806.08325.
  21. [21]
    T. Kinoshita, T. Wenger and D.S. Weiss, A quantum newton’s cradle, Nature 440 (2006) 900.ADSCrossRefGoogle Scholar
  22. [22]
    M. Rigol, V. Dunjko, V. Yurovsky and M. Olshanii, Relaxation in a completely integrable many-body quantum system: An ab initio study of the dynamics of the highly excited states of 1d lattice hard-core bosons, Phys. Rev. Lett. 98 (2007) 050405.Google Scholar
  23. [23]
    P. Calabrese, F.H.L. Essler and M. Fagotti, Quantum Quench in the Transverse Field Ising Chain, Phys. Rev. Lett. 106 (2011) 227203 [arXiv:1104.0154] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J.-S. Caux and R.M. Konik, Constructing the generalized Gibbs ensemble after a quantum quench, Phys. Rev. Lett. 109 (2012) 175301 [arXiv:1203.0901] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    D. Fioretto and G. Mussardo, Quantum quenches in integrable field theories, New J. Phys. 12 (2010) 055015 [INSPIRE].
  26. [26]
    G. Mandal, R. Sinha and N. Sorokhaibam, Thermalization with chemical potentials and higher spin black holes, JHEP 08 (2015) 013 [arXiv:1501.04580] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    S. Sotiriadis, Memory-preserving equilibration after a quantum quench in a one-dimensional critical model, Phys. Rev. A 94 (2016) 031605 [arXiv:1507.07915] [INSPIRE].
  28. [28]
    J. Cardy, Quantum quenches to a critical point in one dimension: some further results, J. Stat. Mech. 02 (2016) 023103 [arXiv:1507.07266] [INSPIRE].
  29. [29]
    J. de Boer and D. Engelhardt, Remarks on thermalization in 2D CFT, Phys. Rev. D 94 (2016) 126019 [arXiv:1604.05327] [INSPIRE].
  30. [30]
    D. Bernard and B. Doyon, Conformal field theory out of equilibrium: a review, J. Stat. Mech. 1606 (2016) 064005 [arXiv:1603.07765] [INSPIRE].
  31. [31]
    D.W.F. Alves and G. Camilo, Momentum-space entanglement after smooth quenches, arXiv:1712.01400 [INSPIRE].
  32. [32]
    A. Maloney, S. Ng, S.F. Ross and I. Tsiares, Thermal Correlation Functions of KdV Charges in 2D CFT, arXiv:1810.11053 [INSPIRE].
  33. [33]
    P. Erdos, On an elementary proof of some asymptotic formulas in the theory of partitions, Annals Math. 43 (1942) 437.MathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    J.L. Cardy, Operator Content of Two-Dimensional Conformally Invariant Theories, Nucl. Phys. B 270 (1986) 186 [INSPIRE].
  35. [35]
    A. Maloney, S.G. Ng, S.F. Ross and I. Tsiares, Generalized Gibbs Ensemble and the Statistics of KdV Charges in 2D CFT, arXiv:1810.11054 [INSPIRE].
  36. [36]
    A.S. Losev, A.V. Marshakov and N.A. Nekrasov, Small instantons, little strings and free fermions, in From Fields to Strings: Circumnavigating Theoretical Physics: Ian Kogan Memorial Collection, in 3 volumes, pp. 581-621, World Scientific (2005).Google Scholar
  37. [37]
    J.M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43 (1991) 2046.Google Scholar
  38. [38]
    M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50 (1994) 888.Google Scholar
  39. [39]
    A.I. Shnirel’man, Ergodic properties of eigenfunctions, Usp. Mat. Nauk 29 (1974) 181.MathSciNetzbMATHGoogle Scholar
  40. [40]
    R.V. Jensen and R. Shankar, Statistical Behavior in Deterministic Quantum Systems With Few Degrees of Freedom, Phys. Rev. Lett. 54 (1985) 1879 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M. Rigol, V. Dunjko and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452 (2008) 854 [arXiv:0708.1324].ADSCrossRefGoogle Scholar
  42. [42]
    N. Lashkari, A. Dymarsky and H. Liu, Eigenstate thermalization hypothesis in conformal field theory, J. Stat. Mech. 03 (2018) 033101 [arXiv:1610.00302] [INSPIRE].
  43. [43]
    A. Dymarsky, N. Lashkari and H. Liu, Subsystem ETH, Phys. Rev. E 97 (2018) 012140 [arXiv:1611.08764] [INSPIRE].
  44. [44]
    N. Lashkari, A. Dymarsky and H. Liu, Universality of Quantum Information in Chaotic CFTs, JHEP 03 (2018) 070 [arXiv:1710.10458] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    B. Chen, J.-B. Wu and J.-j. Zhang, Short interval expansion of Rényi entropy on torus, JHEP 08 (2016) 130 [arXiv:1606.05444] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    F.-L. Lin, H. Wang and J.-j. Zhang, Thermality and excited state Rényi entropy in two-dimensional CFT, JHEP 11 (2016) 116 [arXiv:1610.01362] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  47. [47]
    S. He, F.-L. Lin and J.-j. Zhang, Dissimilarities of reduced density matrices and eigenstate thermalization hypothesis, JHEP 12 (2017) 073 [arXiv:1708.05090] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    P. Basu, D. Das, S. Datta and S. Pal, Thermality of eigenstates in conformal field theories, Phys. Rev. E 96 (2017) 022149 [arXiv:1705.03001] [INSPIRE].
  49. [49]
    S. He, F.-L. Lin and J.-j. Zhang, Subsystem eigenstate thermalization hypothesis for entanglement entropy in CFT, JHEP 08 (2017) 126 [arXiv:1703.08724] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    W.-Z. Guo, F.-L. Lin and J. Zhang, Note on ETH of descendant states in 2D CFT, arXiv:1810.01258 [INSPIRE].
  51. [51]
    Y. Hikida, Y. Kusuki and T. Takayanagi, Eigenstate thermalization hypothesis and modular invariance of two-dimensional conformal field theories, Phys. Rev. D 98 (2018) 026003 [arXiv:1804.09658] [INSPIRE].
  52. [52]
    A. Romero-Bermúdez, P. Sabella-Garnier and K. Schalm, A Cardy formula for off-diagonal three-point coefficients; or, how the geometry behind the horizon gets disentangled, JHEP 09 (2018) 005 [arXiv:1804.08899] [INSPIRE].
  53. [53]
    E.M. Brehm, D. Das and S. Datta, Probing thermality beyond the diagonal, Phys. Rev. D 98 (2018) 126015 [arXiv:1804.07924] [INSPIRE].
  54. [54]
    A. Pérez, D. Tempo and R. Troncoso, Boundary conditions for General Relativity on AdS 3 and the KdV hierarchy, JHEP 06 (2016) 103 [arXiv:1605.04490] [INSPIRE].
  55. [55]
    A. Maloney and E. Witten, Quantum Gravity Partition Functions in Three Dimensions, JHEP 02 (2010) 029 [arXiv:0712.0155] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Holographic Entanglement Entropy from 2d CFT: Heavy States and Local Quenches, JHEP 02 (2015) 171 [arXiv:1410.1392] [INSPIRE].
  57. [57]
    C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Entanglement Scrambling in 2d Conformal Field Theory, JHEP 09 (2015) 110 [arXiv:1506.03772] [INSPIRE].
  58. [58]
    S. Sotiriadis, Equilibration in one-dimensional quantum hydrodynamic systems, J. Phys. A 50 (2017) 424004 [arXiv:1612.00373] [INSPIRE].
  59. [59]
    C. Murthy and M. Srednicki, On relaxation to gaussian and generalized gibbs states in systems of particles with quadratic hamiltonians, arXiv:1809.03681.
  60. [60]
    P. Kraus and A. Maloney, A cardy formula for three-point coefficients or how the black hole got its spots, JHEP 05 (2017) 160 [arXiv:1608.03284] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    T.-C. Lu and T. Grover, Rényi Entropy of Chaotic Eigenstates, arXiv:1709.08784 [INSPIRE].
  62. [62]
    L. Apolo, Bounds on CFTs with \( {\mathcal{W}}_3 \) algebras and AdS 3 higher spin theories, Phys. Rev. D 96 (2017) 086003 [arXiv:1705.10402] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of KentuckyLexingtonU.S.A.
  2. 2.Skolkovo Institute of Science and Technology, Skolkovo Innovation CenterMoscowRussia
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudnyRussia

Personalised recommendations