Advertisement

Second order transport coefficients of nonconformal relativistic fluids in various dimensions from Dp-brane

Open Access
Regular Article - Theoretical Physics
  • 25 Downloads

Abstract

We derive all the dynamical second order transport coefficients for Dp-brane with p from 1 to 6 within the framework of fluid/gravity correspondence in this paper. The D5 and D6-brane do not have dual relativistic fluids; D3-brane corresponds to 4-dimensional conformal relativistic fluid; D1, D2 and D4-brane separately correspond to nonconformal relativistic fluids of dimensions 2, 3 and 5. The Haack-Yarom relation only exists for Dp-branes with p larger than 2 and is also satisfied by them. We also find that the Romatschke and Kleinert-Probst relations need to be generalized in order to be valid for relativistic fluids of dimensions other than 4.

Keywords

Holography and quark-gluon plasmas AdS-CFT Correspondence Gaugegravity correspondence D-branes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics. 2. Sound waves, JHEP 12 (2002) 054 [hep-th/0210220] [INSPIRE].
  4. [4]
    R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP 04 (2008) 100 [arXiv:0712.2451] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    E. Barnes, D. Vaman, C. Wu and P. Arnold, Real-time finite-temperature correlators from AdS/CFT, Phys. Rev. D 82 (2010) 025019 [arXiv:1004.1179] [INSPIRE].
  6. [6]
    P. Arnold, D. Vaman, C. Wu and W. Xiao, Second order hydrodynamic coefficients from 3-point stress tensor correlators via AdS/CFT, JHEP 10 (2011) 033 [arXiv:1105.4645] [INSPIRE].
  7. [7]
    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S. Bhattacharyya et al., Local fluid dynamical entropy from gravity, JHEP 06 (2008) 055 [arXiv:0803.2526] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    S. Bhattacharyya, R. Loganayagam, S. Minwalla, S. Nampuri, S.P. Trivedi and S.R. Wadia, Forced fluid dynamics from gravity, JHEP 02 (2009) 018 [arXiv:0806.0006] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    M. Haack and A. Yarom, Nonlinear viscous hydrodynamics in various dimensions using AdS/CFT, JHEP 10 (2008) 063 [arXiv:0806.4602] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    S. Bhattacharyya, R. Loganayagam, I. Mandal, S. Minwalla and A. Sharma, Conformal nonlinear fluid dynamics from gravity in arbitrary dimensions, JHEP 12 (2008) 116 [arXiv:0809.4272] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP 01 (2009) 055 [arXiv:0809.2488] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    C. Wu, Y. Chen and M. Huang, Fluid/gravity correspondence: second order transport coefficients in compactified D4-branes, JHEP 01 (2017) 118 [arXiv:1604.07765] [INSPIRE].
  14. [14]
    J.I. Kapusta and T. Springer, Shear transport coefficients from gauge/gravity correspondence, Phys. Rev. D 78 (2008) 066017 [arXiv:0806.4175] [INSPIRE].
  15. [15]
    C.P. Herzog, The hydrodynamics of M-theory, JHEP 12 (2002) 026 [hep-th/0210126] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    M. Natsuume and T. Okamura, Causal hydrodynamics of gauge theory plasmas from AdS/CFT duality, Phys. Rev. D 77 (2008) 066014 [Erratum ibid. D 78 (2008) 089902] [arXiv:0712.2916] [INSPIRE].
  17. [17]
    M. Natsuume and T. Okamura, A note on causal hydrodynamics for M-theory branes, Prog. Theor. Phys. 120 (2008) 1217 [arXiv:0801.1797] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    M. Van Raamsdonk, Black hole dynamics from atmospheric science, JHEP 05 (2008) 106 [arXiv:0802.3224] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    A. Buchel, J.T. Liu and A.O. Starinets, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 707 (2005) 56 [hep-th/0406264] [INSPIRE].
  20. [20]
    P. Benincasa and A. Buchel, Transport properties of N = 4 supersymmetric Yang-Mills theory at finite coupling, JHEP 01 (2006) 103 [hep-th/0510041] [INSPIRE].
  21. [21]
    A. Buchel and M. Paulos, Relaxation time of a CFT plasma at finite coupling, Nucl. Phys. B 805 (2008) 59 [arXiv:0806.0788] [INSPIRE].
  22. [22]
    A. Buchel and M. Paulos, Second order hydrodynamics of a CFT plasma from boost invariant expansion, Nucl. Phys. B 810 (2009) 40 [arXiv:0808.1601] [INSPIRE].
  23. [23]
    A. Buchel, R.C. Myers, M.F. Paulos and A. Sinha, Universal holographic hydrodynamics at finite coupling, Phys. Lett. B 669 (2008) 364 [arXiv:0808.1837] [INSPIRE].
  24. [24]
    M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity bound violation in higher derivative gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [INSPIRE].
  25. [25]
    M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The viscosity bound and causality violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    E. Shaverin and A. Yarom, Universality of second order transport in Gauss-Bonnet gravity, JHEP 04 (2013) 013 [arXiv:1211.1979] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    S. Grozdanov and A.O. Starinets, On the universal identity in second order hydrodynamics, JHEP 03 (2015) 007 [arXiv:1412.5685] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    E. Shaverin, A breakdown of a universal hydrodynamic relation in Gauss-Bonnet gravity, arXiv:1509.05418 [INSPIRE].
  29. [29]
    S. Grozdanov and A.O. Starinets, Zero-viscosity limit in a holographic Gauss-Bonnet liquid, Theor. Math. Phys. 182 (2015) 61 [Teor. Mat. Fiz. 182 (2014) 76] [INSPIRE].
  30. [30]
    S. Grozdanov and A.O. Starinets, Second-order transport, quasinormal modes and zero-viscosity limit in the Gauss-Bonnet holographic fluid, JHEP 03 (2017) 166 [arXiv:1611.07053] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    S.S. Gubser, A. Nellore, S.S. Pufu and F.D. Rocha, Thermodynamics and bulk viscosity of approximate black hole duals to finite temperature quantum chromodynamics, Phys. Rev. Lett. 101 (2008) 131601 [arXiv:0804.1950] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    S.S. Gubser, S.S. Pufu and F.D. Rocha, Bulk viscosity of strongly coupled plasmas with holographic duals, JHEP 08 (2008) 085 [arXiv:0806.0407] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    D. Li, S. He and M. Huang, Temperature dependent transport coefficients in a dynamical holographic QCD model, JHEP 06 (2015) 046 [arXiv:1411.5332] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    S.I. Finazzo, R. Rougemont, H. Marrochio and J. Noronha, Hydrodynamic transport coefficients for the non-conformal quark-gluon plasma from holography, JHEP 02 (2015) 051 [arXiv:1412.2968] [INSPIRE].ADSGoogle Scholar
  35. [35]
    P. Kleinert and J. Probst, Second-order hydrodynamics and universality in non-conformal holographic fluids, JHEP 12 (2016) 091 [arXiv:1610.01081] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    F. Bigazzi and A.L. Cotrone, An elementary stringy estimate of transport coefficients of large temperature QCD, JHEP 08 (2010) 128 [arXiv:1006.4634] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  37. [37]
    I. Kanitscheider and K. Skenderis, Universal hydrodynamics of non-conformal branes, JHEP 04 (2009) 062 [arXiv:0901.1487] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    P. Romatschke, New developments in relativistic viscous hydrodynamics, Int. J. Mod. Phys. E 19 (2010) 1 [arXiv:0902.3663] [INSPIRE].
  39. [39]
    A. Buchel, N = 2∗ hydrodynamics, Nucl. Phys. B 708 (2005) 451 [hep-th/0406200] [INSPIRE].
  40. [40]
    P. Benincasa, A. Buchel and A.O. Starinets, Sound waves in strongly coupled non-conformal gauge theory plasma, Nucl. Phys. B 733 (2006) 160 [hep-th/0507026] [INSPIRE].
  41. [41]
    A. Buchel and C. Pagnutti, Bulk viscosity of N = 2∗ plasma, Nucl. Phys. B 816 (2009) 62 [arXiv:0812.3623] [INSPIRE].
  42. [42]
    A. Buchel, Transport properties of cascading gauge theories, Phys. Rev. D 72 (2005) 106002 [hep-th/0509083] [INSPIRE].
  43. [43]
    A. Buchel, Bulk viscosity of gauge theory plasma at strong coupling, Phys. Lett. B 663 (2008) 286 [arXiv:0708.3459] [INSPIRE].
  44. [44]
    A. Parnachev and A. Starinets, The silence of the little strings, JHEP 10 (2005) 027 [hep-th/0506144] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    P. Benincasa and A. Buchel, Hydrodynamics of Sakai-Sugimoto model in the quenched approximation, Phys. Lett. B 640 (2006) 108 [hep-th/0605076] [INSPIRE].
  46. [46]
    J. Mas and J. Tarrio, Hydrodynamics from the Dp-brane, JHEP 05 (2007) 036 [hep-th/0703093] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    M. Natsuume, Causal hydrodynamics and the membrane paradigm, Phys. Rev. D 78 (2008) 066010 [arXiv:0807.1392] [INSPIRE].
  48. [48]
    T. Springer, Sound mode hydrodynamics from bulk scalar fields, Phys. Rev. D 79 (2009) 046003 [arXiv:0810.4354] [INSPIRE].
  49. [49]
    T. Springer, Second order hydrodynamics for a special class of gravity duals, Phys. Rev. D 79 (2009) 086003 [arXiv:0902.2566] [INSPIRE].
  50. [50]
    J.R. David, M. Mahato and S.R. Wadia, Hydrodynamics from the D1-brane, JHEP 04 (2009) 042 [arXiv:0901.2013] [INSPIRE].
  51. [51]
    C. Wu, Y. Chen and M. Huang, Fluid/gravity correspondence: a nonconformal realization in compactified D4 branes, Phys. Rev. D 93 (2016) 066005 [arXiv:1508.04038] [INSPIRE].
  52. [52]
    G.D. Moore and K.A. Sohrabi, Thermodynamical second-order hydrodynamic coefficients, JHEP 11 (2012) 148 [arXiv:1210.3340] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    D. Mateos, R.C. Myers and R.M. Thomson, Thermodynamics of the brane, JHEP 05 (2007) 067 [hep-th/0701132] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    M. Haack and A. Yarom, Universality of second order transport coefficients from the gauge-string duality, Nucl. Phys. B 813 (2009) 140 [arXiv:0811.1794] [INSPIRE].
  55. [55]
    P. Romatschke, Relativistic viscous fluid dynamics and non-equilibrium entropy, Class. Quant. Grav. 27 (2010) 025006 [arXiv:0906.4787] [INSPIRE].
  56. [56]
    N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Jain, S. Minwalla and T. Sharma, Constraints on fluid dynamics from equilibrium partition functions, JHEP 09 (2012) 046 [arXiv:1203.3544] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    S.S. Gubser, Symmetry constraints on generalizations of Bjorken flow, Phys. Rev. D 82 (2010) 085027 [arXiv:1006.0006] [INSPIRE].
  58. [58]
    S.S. Gubser and A. Yarom, Conformal hydrodynamics in Minkowski and de Sitter spacetimes, Nucl. Phys. B 846 (2011) 469 [arXiv:1012.1314] [INSPIRE].
  59. [59]
    H. Marrochio, J. Noronha, G.S. Denicol, M. Luzum, S. Jeon and C. Gale, Solutions of conformal Israel-Stewart relativistic viscous fluid dynamics, Phys. Rev. C 91 (2015) 014903 [arXiv:1307.6130] [INSPIRE].
  60. [60]
    Y. Hatta, J. Noronha and B.-W. Xiao, Exact analytical solutions of second-order conformal hydrodynamics, Phys. Rev. D 89 (2014) 051702 [arXiv:1401.6248] [INSPIRE].
  61. [61]
    Y. Hatta, J. Noronha and B.-W. Xiao, A systematic study of exact solutions in second-order conformal hydrodynamics, Phys. Rev. D 89 (2014) 114011 [arXiv:1403.7693] [INSPIRE].
  62. [62]
    M.I. Nagy, T. Csorgo and M. Csanad, Detailed description of accelerating, simple solutions of relativistic perfect fluid hydrodynamics, Phys. Rev. C 77 (2008) 024908 [arXiv:0709.3677] [INSPIRE].
  63. [63]
    J. Ze-Fang, Y. Chun-Bin, M. Csanad and T. Csorgo, Accelerating hydrodynamic description of pseudorapidity density and the initial energy density in p + p, Cu + Cu, Au + Au and Pb + Pb collisions at energies available at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider, Phys. Rev. C 97 (2018) 064906 [arXiv:1711.10740] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.MTA Lendület Holographic QFT Group, Wigner Research Centre for PhysicsBudapest 114Hungary

Personalised recommendations