Advertisement

Interactions of astrophysical neutrinos with dark matter: a model building perspective

  • Sujata Pandey
  • Siddhartha KarmakarEmail author
  • Subhendu Rakshit
Open Access
Regular Article - Theoretical Physics
  • 18 Downloads

Abstract

We explore the possibility that high energy astrophysical neutrinos can interact with the dark matter on their way to Earth. Keeping in mind that new physics might leave its signature at such energies, we have considered all possible topologies for effective interactions between neutrino and dark matter. Building models, that give rise to a significant flux suppression of astrophysical neutrinos at Earth, is rather difficult. We present a Z-mediated model in this context. Encompassing a large variety of models, a wide range of dark matter masses from 10−21 eV up to a TeV, this study aims at highlighting the challenges one encounters in such a model building endeavour after satisfying various cosmological constraints, collider search limits and electroweak precision measurements.

Keywords

Beyond Standard Model Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P.B. Denton, D. Marfatia and T.J. Weiler, The Galactic Contribution to IceCube’s Astrophysical Neutrino Flux, JCAP 08 (2017) 033 [arXiv:1703.09721] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    IceCube collaboration, The IceCube Neutrino Observatory — Contributions to ICRC 2017 Part II: Properties of the Atmospheric and Astrophysical Neutrino Flux, arXiv:1710.01191 [INSPIRE].
  3. [3]
    S.M. Boucenna et al., Decaying Leptophilic Dark Matter at IceCube, JCAP 12 (2015) 055 [arXiv:1507.01000] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    D. Borah, A. Dasgupta, U.K. Dey, S. Patra and G. Tomar, Multi-component Fermionic Dark Matter and IceCube PeV scale Neutrinos in Left-Right Model with Gauge Unification, JHEP 09 (2017) 005 [arXiv:1704.04138] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J. Zavala, Galactic PeV neutrinos from dark matter annihilation, Phys. Rev. D 89 (2014) 123516 [arXiv:1404.2932] [INSPIRE].
  6. [6]
    P.S.B. Dev, R.N. Mohapatra and Y. Zhang, Heavy right-handed neutrino dark matter in left-right models, Mod. Phys. Lett. A 32 (2017) 1740007 [arXiv:1610.05738] [INSPIRE].
  7. [7]
    N. Hiroshima, R. Kitano, K. Kohri and K. Murase, High-energy neutrinos from multibody decaying dark matter, Phys. Rev. D 97 (2018) 023006 [arXiv:1705.04419] [INSPIRE].
  8. [8]
    G. Lambiase, S. Mohanty and A. Stabile, PeV IceCube signals and Dark Matter relic abundance in modified cosmologies, Eur. Phys. J. C 78 (2018) 350 [arXiv:1804.07369] [INSPIRE].
  9. [9]
    K. Murase, R. Laha, S. Ando and M. Ahlers, Testing the Dark Matter Scenario for PeV Neutrinos Observed in IceCube, Phys. Rev. Lett. 115 (2015) 071301 [arXiv:1503.04663] [INSPIRE].
  10. [10]
    M. Dhuria and V. Rentala, PeV scale Supersymmetry breaking and the IceCube neutrino flux, JHEP 09 (2018) 004 [arXiv:1712.07138] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    K. Murase and E. Waxman, Constraining High-Energy Cosmic Neutrino Sources: Implications and Prospects, Phys. Rev. D 94 (2016) 103006 [arXiv:1607.01601] [INSPIRE].
  12. [12]
    C.-Y. Chen, P.S. Bhupal Dev and A. Soni, Standard model explanation of the ultrahigh energy neutrino events at IceCube, Phys. Rev. D 89 (2014) 033012 [arXiv:1309.1764] [INSPIRE].
  13. [13]
    K. Murase, Active Galactic Nuclei as High-Energy Neutrino Sources, DOI: https://doi.org/10.1142/9789814759410_0002 [arXiv:1511.01590] [INSPIRE].
  14. [14]
    Pierre Auger collaboration, Observation of a Large-scale Anisotropy in the Arrival Directions of Cosmic Rays above 8 × 1018 eV, Science 357 (2017) 1266 [arXiv:1709.07321] [INSPIRE].
  15. [15]
    E. Waxman and J.N. Bahcall, High-energy neutrinos from astrophysical sources: An Upper bound, Phys. Rev. D 59 (1999) 023002 [hep-ph/9807282] [INSPIRE].
  16. [16]
    J.N. Bahcall and E. Waxman, High-energy astrophysical neutrinos: The Upper bound is robust, Phys. Rev. D 64 (2001) 023002 [hep-ph/9902383] [INSPIRE].
  17. [17]
    C. Boehm, M.J. Dolan and C. McCabe, A Lower Bound on the Mass of Cold Thermal Dark Matter from Planck, JCAP 08 (2013) 041 [arXiv:1303.6270] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Olivares-Del Campo, C. Boehm, S. Palomares-Ruiz and S. Pascoli, Dark matter-neutrino interactions through the lens of their cosmological implications, Phys. Rev. D 97 (2018) 075039 [arXiv:1711.05283] [INSPIRE].
  19. [19]
    R.J. Wilkinson, C. Boehm and J. Lesgourgues, Constraining Dark Matter-Neutrino Interactions using the CMB and Large-Scale Structure, JCAP 05 (2014) 011 [arXiv:1401.7597] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Escudero, O. Mena, A.C. Vincent, R.J. Wilkinson and C. Boehm, Exploring dark matter microphysics with galaxy surveys, JCAP 09 (2015) 034 [arXiv:1505.06735] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Barranco, O.G. Miranda, C.A. Moura, T.I. Rashba and F. Rossi-Torres, Confusing the extragalactic neutrino flux limit with a neutrino propagation limit, JCAP 10 (2011) 007 [arXiv:1012.2476] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M.M. Reynoso and O.A. Sampayo, Propagation of high-energy neutrinos in a background of ultralight scalar dark matter, Astropart. Phys. 82 (2016) 10 [arXiv:1605.09671] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    C.A. Argüelles, A. Kheirandish and A.C. Vincent, Imaging Galactic Dark Matter with High-Energy Cosmic Neutrinos, Phys. Rev. Lett. 119 (2017) 201801 [arXiv:1703.00451] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    P.F. de Salas, R.A. Lineros and M. Tórtola, Neutrino propagation in the galactic dark matter halo, Phys. Rev. D 94 (2016) 123001 [arXiv:1601.05798] [INSPIRE].
  25. [25]
    G.-Y. Huang and N. Nath, Neutrinophilic Axion-Like Dark Matter, Eur. Phys. J. C 78 (2018) 922 [arXiv:1809.01111] [INSPIRE].
  26. [26]
    K.C.Y. Ng and J.F. Beacom, Cosmic neutrino cascades from secret neutrino interactions, Phys. Rev. D 90 (2014) 065035 [Erratum ibid. D 90 (2014) 089904] [arXiv:1404.2288] [INSPIRE].
  27. [27]
    A. DiFranzo and D. Hooper, Searching for MeV-Scale Gauge Bosons with IceCube, Phys. Rev. D 92 (2015) 095007 [arXiv:1507.03015] [INSPIRE].
  28. [28]
    T. Araki, F. Kaneko, T. Ota, J. Sato and T. Shimomura, MeV scale leptonic force for cosmic neutrino spectrum and muon anomalous magnetic moment, Phys. Rev. D 93 (2016) 013014 [arXiv:1508.07471] [INSPIRE].
  29. [29]
    S. Mohanty, A. Narang and S. Sadhukhan, Cutoff of IceCube Neutrino Spectrum due to t-channel Resonant Absorption by CνB, arXiv:1808.01272 [INSPIRE].
  30. [30]
    B. Chauhan and S. Mohanty, Signature of light sterile neutrinos at IceCube, Phys. Rev. D 98 (2018) 083021 [arXiv:1808.04774] [INSPIRE].
  31. [31]
    K.J. Kelly and P.A.N. Machado, Multimessenger Astronomy and New Neutrino Physics, JCAP 10 (2018) 048 [arXiv:1808.02889] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    I.M. Shoemaker and K. Murase, Probing BSM Neutrino Physics with Flavor and Spectral Distortions: Prospects for Future High-Energy Neutrino Telescopes, Phys. Rev. D 93 (2016) 085004 [arXiv:1512.07228] [INSPIRE].
  33. [33]
    J.F. Cherry, A. Friedland and I.M. Shoemaker, Short-baseline neutrino oscillations, Planck and IceCube, arXiv:1605.06506 [INSPIRE].
  34. [34]
    M. Ibe and K. Kaneta, Cosmic neutrino background absorption line in the neutrino spectrum at IceCube, Phys. Rev. D 90 (2014) 053011 [arXiv:1407.2848] [INSPIRE].
  35. [35]
    P. Bode, J.P. Ostriker and N. Turok, Halo formation in warm dark matter models, Astrophys. J. 556 (2001) 93 [astro-ph/0010389] [INSPIRE].
  36. [36]
    C. Boehm and P. Fayet, Scalar dark matter candidates, Nucl. Phys. B 683 (2004) 219 [hep-ph/0305261] [INSPIRE].
  37. [37]
    P. Salucci, F. Walter and A. Borriello, The distribution of dark matter in galaxies: The Constant density halo around DDO 47, Astron. Astrophys. 409 (2003) 53 [astro-ph/0206304] [INSPIRE].
  38. [38]
    W.J. G.d. Blok, A. Bosma and S.S. McGaugh, Simulating observations of dark matter dominated galaxies: towards the optimal halo profile, Mon. Not. Roy. Astron. Soc. 340 (2003) 657 [astro-ph/0212102] [INSPIRE].
  39. [39]
    A. Tasitsiomi, The Cold dark matter crisis on galactic and subgalactic scales, Int. J. Mod. Phys. D 12 (2003) 1157 [astro-ph/0205464] [INSPIRE].
  40. [40]
    A.A. Klypin, A.V. Kravtsov, O. Valenzuela and F. Prada, Where are the missing Galactic satellites?, Astrophys. J. 522 (1999) 82 [astro-ph/9901240] [INSPIRE].
  41. [41]
    J.F. Navarro, C.S. Frenk and S.D.M. White, The Structure of cold dark matter halos, Astrophys. J. 462 (1996) 563 [astro-ph/9508025] [INSPIRE].
  42. [42]
    W. Hu, R. Barkana and A. Gruzinov, Cold and fuzzy dark matter, Phys. Rev. Lett. 85 (2000) 1158 [astro-ph/0003365] [INSPIRE].
  43. [43]
    M. Alcubierre, F.S. Guzman, T. Matos, D. Núñez, L.A. Urena-Lopez and P. Wiederhold, Galactic collapse of scalar field dark matter, Class. Quant. Grav. 19 (2002) 5017 [gr-qc/0110102] [INSPIRE].
  44. [44]
    T. Harko, Evolution of cosmological perturbations in Bose-Einstein condensate dark matter, Mon. Not. Roy. Astron. Soc. 413 (2011) 3095 [arXiv:1101.3655] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    P.J.E. Peebles, Fluid dark matter, Astrophys. J. 534 (2000) L127 [astro-ph/0002495] [INSPIRE].
  46. [46]
    T. Matos and L.A. Urena-Lopez, Flat rotation curves in scalar field galaxy halos, Gen. Rel. Grav. 39 (2007) 1279 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    K.-Y. Su and P. Chen, Solving the Cusp-Core Problem with a Novel Scalar Field Dark Matter, JCAP 08 (2011) 016 [arXiv:1008.3717] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    P. Sikivie and Q. Yang, Bose-Einstein Condensation of Dark Matter Axions, Phys. Rev. Lett. 103 (2009) 111301 [arXiv:0901.1106] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    ADMX collaboration, A high resolution search for dark-matter axions, Phys. Rev. D 74 (2006) 012006 [astro-ph/0603108] [INSPIRE].
  50. [50]
    M. Tada et al., CARRACK II: A new large scale experiment to search for axions with Rydberg-atom cavity detector, Nucl. Phys. Proc. Suppl. 72 (1999) 164 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    P.S.B. Dev, M. Lindner and S. Ohmer, Gravitational waves as a new probe of Bose-Einstein condensate Dark Matter, Phys. Lett. B 773 (2017) 219 [arXiv:1609.03939] [INSPIRE].
  52. [52]
    P.W. Graham, J. Mardon and S. Rajendran, Vector Dark Matter from Inflationary Fluctuations, Phys. Rev. D 93 (2016) 103520 [arXiv:1504.02102] [INSPIRE].
  53. [53]
    XENON collaboration, Physics reach of the XENON1T dark matter experiment, JCAP 04 (2016) 027 [arXiv:1512.07501] [INSPIRE].
  54. [54]
    LUX collaboration, Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].
  55. [55]
    GAMBIT collaboration, Status of the scalar singlet dark matter model, Eur. Phys. J. C 77 (2017) 568 [arXiv:1705.07931] [INSPIRE].
  56. [56]
    K. Schawinski et al., The Sudden Death of the Nearest Quasar, Astrophys. J. 724 (2010) L30 [arXiv:1011.0427] [INSPIRE].
  57. [57]
    Particle Data Group, Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  58. [58]
    DELPHI collaboration, Photon events with missing energy in e + e collisions at \( \sqrt{s}=130 \) GeV to 209-GeV, Eur. Phys. J. C 38 (2005) 395 [hep-ex/0406019] [INSPIRE].
  59. [59]
    N.D. Christensen and C. Duhr, FeynRules — Feynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].
  60. [60]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].
  61. [61]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
  62. [62]
    ALEPH, DELPHI, L3, OPAL collaborations, LEP Working Group for Higgs Boson Searches, Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J. C 47 (2006) 547 [hep-ex/0602042] [INSPIRE].
  63. [63]
    D. Das and A. Santamaria, Updated scalar sector constraints in the Higgs triplet model, Phys. Rev. D 94 (2016) 015015 [arXiv:1604.08099] [INSPIRE].
  64. [64]
    L3 collaboration, Search for heavy neutral and charged leptons in e + e annihilation at LEP, Phys. Lett. B 517 (2001) 75 [hep-ex/0107015] [INSPIRE].
  65. [65]
    J.P. Leveille, The Second Order Weak Correction to (g − 2) of the Muon in Arbitrary Gauge Models, Nucl. Phys. B 137 (1978) 63 [INSPIRE].
  66. [66]
    G.-y. Huang, T. Ohlsson and S. Zhou, Observational Constraints on Secret Neutrino Interactions from Big Bang Nucleosynthesis, Phys. Rev. D 97 (2018) 075009 [arXiv:1712.04792] [INSPIRE].
  67. [67]
    P.F. de Salas and S. Pastor, Relic neutrino decoupling with flavour oscillations revisited, JCAP 07 (2016) 051 [arXiv:1606.06986] [INSPIRE].
  68. [68]
    Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  69. [69]
    V. Iršič, M. Viel, M.G. Haehnelt, J.S. Bolton and G.D. Becker, First constraints on fuzzy dark matter from Lyman-α forest data and hydrodynamical simulations, Phys. Rev. Lett. 119 (2017) 031302 [arXiv:1703.04683] [INSPIRE].
  70. [70]
    E. Armengaud, N. Palanque-Delabrouille, C. Yèche, D.J.E. Marsh and J. Baur, Constraining the mass of light bosonic dark matter using SDSS Lyman-α forest, Mon. Not. Roy. Astron. Soc. 471 (2017) 4606 [arXiv:1703.09126] [INSPIRE].
  71. [71]
    S. Das and R.K. Bhaduri, Dark matter and dark energy from a Bose-Einstein condensate, Class. Quant. Grav. 32 (2015) 105003 [arXiv:1411.0753] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  72. [72]
    B. Bertoni, S. Ipek, D. McKeen and A.E. Nelson, Constraints and consequences of reducing small scale structure via large dark matter-neutrino interactions, JHEP 04 (2015) 170 [arXiv:1412.3113] [INSPIRE].
  73. [73]
    P. Fayet, D. Hooper and G. Sigl, Constraints on light dark matter from core-collapse supernovae, Phys. Rev. Lett. 96 (2006) 211302 [hep-ph/0602169] [INSPIRE].
  74. [74]
    G. Mangano, A. Melchiorri, P. Serra, A. Cooray and M. Kamionkowski, Cosmological bounds on dark matter-neutrino interactions, Phys. Rev. D 74 (2006) 043517 [astro-ph/0606190] [INSPIRE].
  75. [75]
    P. Fayet, Invisible Upsilon decays into Light Dark Matter, Phys. Rev. D 81 (2010) 054025 [arXiv:0910.2587] [INSPIRE].
  76. [76]
    P.H. Frampton, P.Q. Hung and M. Sher, Quarks and leptons beyond the third generation, Phys. Rept. 330 (2000) 263 [hep-ph/9903387] [INSPIRE].
  77. [77]
    B.A. Dobrescu and C. Frugiuele, Hidden GeV-scale interactions of quarks, Phys. Rev. Lett. 113 (2014) 061801 [arXiv:1404.3947] [INSPIRE].
  78. [78]
    H.E. Haber and O. Stål, New LHC benchmarks for the \( \mathcal{C}\mathcal{P} \) -conserving two-Higgs-doublet model, Eur. Phys. J. C 75 (2015) 491 [Erratum ibid. C 76 (2016) 312] [arXiv:1507.04281] [INSPIRE].
  79. [79]
    G.C. Dorsch, S.J. Huber, K. Mimasu and J.M. No, Hierarchical versus degenerate 2HDM: The LHC run 1 legacy at the onset of run 2, Phys. Rev. D 93 (2016) 115033 [arXiv:1601.04545] [INSPIRE].
  80. [80]
    D. Das, A. Kundu and I. Saha, Higgs data does not rule out a sequential fourth generation with an extended scalar sector, Phys. Rev. D 97 (2018) 011701 [arXiv:1707.03000] [INSPIRE].
  81. [81]
    V.A. Naumov and L. Perrone, Neutrino propagation through matter, Astropart. Phys. 10 (1999) 239 [hep-ph/9804301] [INSPIRE].
  82. [82]
    S. Karmakar, S. Pandey and S. Rakshit, Are We Looking at Neutrino Absorption Spectra at IceCube?, arXiv:1810.04192 [INSPIRE].
  83. [83]
    J.D. Jackson, Classical Electrodynamics, third edition, John Wiley & Sons, Inc. (1998).Google Scholar
  84. [84]
    P.B. Pal, An Introductory Course of Particle Physics, first edition, CRC Press, Taylor and Francis Group (2014).Google Scholar
  85. [85]
    J. Ellis, M. Fairbairn and P. Tunney, Anomaly-Free Dark Matter Models are not so Simple, JHEP 08 (2017) 053 [arXiv:1704.03850] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  86. [86]
    M. Carena, A. Daleo, B.A. Dobrescu and T.M.P. Tait, Z gauge bosons at the Tevatron, Phys. Rev. D 70 (2004) 093009 [hep-ph/0408098] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Discipline of Physics, Indian Institute of Technology IndoreIndoreIndia

Personalised recommendations