Aspects of massive gauge theories on three sphere in infinite mass limit

  • Kazuma Shimizu
Open Access
Regular Article - Theoretical Physics


We study the S3 partition function of three-dimensional supersymmetric \( \mathcal{N}=4 \) U(N) SQCD with massive matter multiplets in the infinite mass limit with the so-called Coulomb branch localization. We show that in the infinite mass limit a specific point of the Coulomb branch is selected and contributes dominantly to the partition function. Therefore, we can argue whether each multiplet included in the theory is effectively massless in this limit, even on S3, and conclude that the partition function becomes that of the effective theory on the specific point of the Coulomb branch in the infinite mass limit. In order to investigate which point of the Coulomb branch is dominant, we use the saddle point approximation in the large N limit because the solution of the saddle point equation can be regarded as a specific point of the Coulomb branch. Then, we calculate the partition functions for small rank N and confirm that their behaviors in the infinite mass limit are consistent with the conjecture from the results in the large N limit. Our result suggests that the partition function in the infinite mass limit corresponds to that of an interacting superconformal field theory.


Supersymmetric Gauge Theory Matrix Models 1/N Expansion Field Theories in Lower Dimensions 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    R.D. Pisarski, Chiral symmetry breaking in three-dimensional electrodynamics, Phys. Rev. D 29 (1984) 2423 [INSPIRE].
  2. [2]
    T. Appelquist, D. Nash and L.C.R. Wijewardhana, Critical behavior in (2 + 1)-dimensional QED, Phys. Rev. Lett. 60 (1988) 2575 [INSPIRE].
  3. [3]
    T. Appelquist and D. Nash, Critical behavior in (2 + 1)-dimensional QCD, Phys. Rev. Lett. 64 (1990) 721 [INSPIRE].
  4. [4]
    A. Barranco and J.G. Russo, Large N phase transitions in supersymmetric Chern-Simons theory with massive matter, JHEP 03 (2014) 012 [arXiv:1401.3672] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J.G. Russo, G.A. Silva and M. Tierz, Supersymmetric U(N ) Chern-Simons-Matter theory and phase transitions, Commun. Math. Phys. 338 (2015) 1411 [arXiv:1407.4794] [INSPIRE].
  6. [6]
    L. Anderson and K. Zarembo, Quantum phase transitions in mass-deformed ABJM matrix model, JHEP 09 (2014) 021 [arXiv:1406.3366] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    L. Anderson and J.G. Russo, ABJM theory with mass and FI deformations and quantum phase transitions, JHEP 05 (2015) 064 [arXiv:1502.06828] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    T. Nosaka, K. Shimizu and S. Terashima, Large N behavior of mass deformed ABJM theory, JHEP 03 (2016) 063 [arXiv:1512.00249] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  9. [9]
    T. Nosaka, K. Shimizu and S. Terashima, Mass deformed ABJM theory on three sphere in large N limit, JHEP 03 (2017) 121 [arXiv:1608.02654] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J.G. Russo and M. Tierz, Quantum phase transition in many-flavor supersymmetric QED 3, Phys. Rev. D 95 (2017) 031901 [arXiv:1610.08527] [INSPIRE].
  11. [11]
    L. Anderson and N. Drukker, More large N limits of 3d gauge theories, J. Phys. A 50 (2017) 345401 [arXiv:1701.04409] [INSPIRE].
  12. [12]
    M. Honda, T. Nosaka, K. Shimizu and S. Terashima, Supersymmetry breaking in a large N gauge theory with gravity dual, arXiv:1807.08874 [INSPIRE].
  13. [13]
    L. Anderson and M.M. Roberts, Mass deformed ABJM and \( \mathcal{P}\mathcal{T} \) symmetry, arXiv:1807.10307 [INSPIRE].
  14. [14]
    L. Santilli and M. Tierz, Phase transitions and Wilson loops in antisymmetric representations in Chern-Simons-matter theory, arXiv:1808.02855 [INSPIRE].
  15. [15]
    K. Shimizu and S. Terashima, Supersymmetry breaking phase in three dimensional large N gauge theories, JHEP 11 (2018) 064 [arXiv:1809.03670] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    D. Gaiotto and E. Witten, S-duality of boundary conditions in N = 4 Super Yang-Mills theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].
  17. [17]
    B. Assel and S. Cremonesi, The infrared physics of bad theories, SciPost Phys. 3 (2017) 024 [arXiv:1707.03403] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Dey and P. Koroteev, Good IR duals of bad quiver theories, JHEP 05 (2018) 114 [arXiv:1712.06068] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    B. Assel and S. Cremonesi, The infrared fixed points of 3d \( \mathcal{N}=4 \) USp(2N) SQCD theories, SciPost Phys. 5 (2018) 015 [arXiv:1802.04285] [INSPIRE].
  20. [20]
    A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    A. Kapustin, B. Willett and I. Yaakov, Nonperturbative tests of three-dimensional dualities, JHEP 10 (2010) 013 [arXiv:1003.5694] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    D.L. Jafferis, The exact superconformal R-symmetry extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    N. Hama, K. Hosomichi and S. Lee, Notes on SUSY gauge theories on three-sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    V. Niarchos, Seiberg dualities and the 3d/4d connection, JHEP 07 (2012) 075 [arXiv:1205.2086] [INSPIRE].
  25. [25]
    O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities, JHEP 07 (2013) 149 [arXiv:1305.3924] [INSPIRE].
  26. [26]
    A. Amariti, A note on 3D \( \mathcal{N}=2 \) dualities: real mass flow and partition function, JHEP 03 (2014) 064 [arXiv:1309.6434] [INSPIRE].
  27. [27]
    I. Yaakov, Redeeming bad theories, JHEP 11 (2013) 189 [arXiv:1303.2769] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    O. Aharony et al., Aspects of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 499 (1997) 67 [hep-th/9703110] [INSPIRE].
  29. [29]
    A. Giveon and D. Kutasov, Seiberg duality in Chern-Simons theory, Nucl. Phys. B 812 (2009) 1 [arXiv:0808.0360] [INSPIRE].
  30. [30]
    B. Willett and I. Yaakov, N = 2 dualities and Z extremization in three dimensions, arXiv:1104.0487 [INSPIRE].
  31. [31]
    C. Closset et al., Contact terms, unitarity and F-maximization in three-dimensional superconformal theories, JHEP 10 (2012) 053 [arXiv:1205.4142] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    C. Closset et al., Comments on Chern-Simons contact terms in three dimensions, JHEP 09 (2012) 091 [arXiv:1206.5218] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, Supersymmetric field theories on three-manifolds, JHEP 05 (2013) 017 [arXiv:1212.3388] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    J. Lee and M. Yamazaki, Gauging and decoupling in 3d \( \mathcal{N}=2 \) dualities, JHEP 06 (2016) 077 [arXiv:1603.02283] [INSPIRE].
  35. [35]
    M. Tierz, Wilson loops and free energies in 3d \( \mathcal{N}=4 \) SYM: exact results, exponential asymptotics and duality, arXiv:1804.10845 [INSPIRE].
  36. [36]
    Y.V. Fyodorov and B.A. Khoruzhenko, A Few remarks on colour-flavour transformations,truncations of random unitary matrices, Berezin reproducing kernels and Selberg type integrals, J. Phys. A 40 (2007) 669 [math-ph/0610045] [INSPIRE].
  37. [37]
    D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-theorem: N = 2 field theories on the three-sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [INSPIRE].
  38. [38]
    M. Mariño, Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories, J. Phys. A 44 (2011) 463001 [arXiv:1104.0783] [INSPIRE].
  39. [39]
    C. Brézin et al., Planar diagrams, Commun. Math. Phys. 59 (1978) 35.Google Scholar
  40. [40]
    T. Suyama, On large N solution of N = 3 Chern-Simons-adjoint theories, Nucl. Phys. B 867 (2013) 887 [arXiv:1208.2096] [INSPIRE].
  41. [41]
    B.R. Safdi, I.R. Klebanov and J. Lee, A crack in the conformal window, JHEP 04 (2013) 165 [arXiv:1212.4502] [INSPIRE].
  42. [42]
    M. Mezei and S.S. Pufu, Three-sphere free energy for classical gauge groups, JHEP 02 (2014) 037 [arXiv:1312.0920] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. Grassi and M. Mariño, M-theoretic matrix models, JHEP 02 (2015) 115 [arXiv:1403.4276] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Multi-matrix models and Tri-Sasaki Einstein spaces, Phys. Rev. D 83 (2011) 046001 [arXiv:1011.5487] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan

Personalised recommendations