Advertisement

Comments on Lorentz transformations, dressed asymptotic states and Hawking radiation

  • Reza Javadinezhad
  • Uri KolEmail author
  • Massimo Porrati
Open Access
Regular Article - Theoretical Physics
  • 18 Downloads

Abstract

We consider two applications of the factorization of infrared dynamics in QED and gravity. The first is a redefinition of the Lorentz transformations that makes them commute with supertranslations. The other is the process of particle creation near a black hole horizon. For the latter we show that the emission of soft particles factors out of the S-matrix in the fixed-background approximation and to leading order in the soft limit. The factorization is implemented by dressing the incoming and outgoing asymptotic states with clouds of soft photons and soft gravitons. We find that while the soft photon cloud has no effect, the soft graviton cloud induces a phase shift in the Bogolyubov coefficients relating the incoming and outgoing modes. However, the flux of outgoing particles, given by the absolute value of the Bogolyubov coefficient, is insensitive to this phase.

Keywords

Black Holes Scattering Amplitudes Space-Time Symmetries Spontaneous Symmetry Breaking 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    F. Bloch and A. Nordsieck, Note on the radiation field of the electron, Phys. Rev. 52 (1937) 54 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  2. [2]
    T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys. 3 (1962) 650 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    T.D. Lee and M. Nauenberg, Degenerate systems and mass singularities, Phys. Rev. 133 (1964) B1549 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    V. Chung, Infrared divergence in quantum electrodynamics, Phys. Rev. 140 (1965) B1110 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    T.W.B. Kibble, Coherent soft-photon states and infrared divergences. I. Classical currents, J. Math. Phys. 9 (1968) 315.Google Scholar
  6. [6]
    T.W.B. Kibble, Coherent soft-photon states and infrared divergences. II. Mass-shell singularities of Green’s functions, Phys. Rev. 173 (1968) 1527 [INSPIRE].
  7. [7]
    T.W.B. Kibble, Coherent soft-photon states and infrared divergences. III. Asymptotic states and reduction formulas, Phys. Rev. 174 (1968) 1882 [INSPIRE].
  8. [8]
    T.W.B. Kibble, Coherent soft-photon states and infrared divergences. IV. The scattering operator, Phys. Rev. 175 (1968) 1624 [INSPIRE].
  9. [9]
    P.P. Kulish and L.D. Faddeev, Asymptotic conditions and infrared divergences in quantum electrodynamics, Theor. Math. Phys. 4 (1970) 745 [Teor. Mat. Fiz. 4 (1970) 153] [INSPIRE].
  10. [10]
    A. Strominger, Lectures on the infrared structure of gravity and gauge theory, arXiv:1703.05448 [INSPIRE].
  11. [11]
    A. Strominger, Black hole information revisited, arXiv:1706.07143 [INSPIRE].
  12. [12]
    D. Carney, L. Chaurette, D. Neuenfeld and G.W. Semenoff, Infrared quantum information, Phys. Rev. Lett. 119 (2017) 180502 [arXiv:1706.03782] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    D. Carney, L. Chaurette, D. Neuenfeld and G.W. Semenoff, Dressed infrared quantum information, Phys. Rev. D 97 (2018) 025007 [arXiv:1710.02531] [INSPIRE].ADSGoogle Scholar
  14. [14]
    M. Mirbabayi and M. Porrati, Dressed hard states and black hole soft hair, Phys. Rev. Lett. 117 (2016) 211301 [arXiv:1607.03120] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    R. Bousso and M. Porrati, Soft hair as a soft wig, Class. Quant. Grav. 34 (2017) 204001 [arXiv:1706.00436] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    R. Bousso and M. Porrati, Observable supertranslations, Phys. Rev. D 96 (2017) 086016 [arXiv:1706.09280] [INSPIRE].ADSMathSciNetGoogle Scholar
  17. [17]
    S.W. Hawking, M.J. Perry and A. Strominger, Soft hair on black holes, Phys. Rev. Lett. 116 (2016) 231301 [arXiv:1601.00921] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S.W. Hawking, M.J. Perry and A. Strominger, Superrotation charge and supertranslation hair on black holes, JHEP 05 (2017) 161 [arXiv:1611.09175] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    A. Averin, G. Dvali, C. Gomez and D. Lüst, Goldstone origin of black hole hair from supertranslations and criticality, Mod. Phys. Lett. A 31 (2016) 1630045 [arXiv:1606.06260] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    C. Gomez and S. Zell, Black hole evaporation, quantum hair and supertranslations, Eur. Phys. J. C 78 (2018) 320 [arXiv:1707.08580] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    B. Gabai and A. Sever, Large gauge symmetries and asymptotic states in QED, JHEP 12 (2016) 095 [arXiv:1607.08599] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    D. Kapec, M. Perry, A.-M. Raclariu and A. Strominger, Infrared divergences in QED, revisited, Phys. Rev. D 96 (2017) 085002 [arXiv:1705.04311] [INSPIRE].ADSMathSciNetGoogle Scholar
  23. [23]
    T. He, P. Mitra, A.P. Porfyriadis and A. Strominger, New symmetries of massless QED, JHEP 10 (2014) 112 [arXiv:1407.3789] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    D. Kapec, M. Pate and A. Strominger, New symmetries of QED, Adv. Theor. Math. Phys. 21 (2017) 1769 [arXiv:1506.02906] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21 [INSPIRE].
  26. [26]
    R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103 [INSPIRE].
  27. [27]
    A. Strominger, On BMS invariance of gravitational scattering, JHEP 07 (2014) 152 [arXiv:1312.2229] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    D. Christodoulou and S. Klainerman, The global nonlinear stability of the Minkowski space, Princeton University Press, Princeton, U.S.A. (1993) [INSPIRE].zbMATHGoogle Scholar
  29. [29]
    M. Henneaux and C. Troessaert, BMS group at spatial infinity: the Hamiltonian (ADM) approach, JHEP 03 (2018) 147 [arXiv:1801.03718] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    M. Henneaux and C. Troessaert, Asymptotic symmetries of electromagnetism at spatial infinity, JHEP 05 (2018) 137 [arXiv:1803.10194] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    M. Henneaux and C. Troessaert, Hamiltonian structure and asymptotic symmetries of the Einstein-Maxwell system at spatial infinity, JHEP 07 (2018) 171 [arXiv:1805.11288] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
  33. [33]
    S.W. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14 (1976) 2460 [INSPIRE].ADSMathSciNetGoogle Scholar
  34. [34]
    F.H.J. Cornish, Energy and momentum in general relativity — III. The total energy, momentum and angular momentum of an isolated finite system generating gravitational waves, Proc. Roy. Soc. Lond. A 286 (1965) 270.Google Scholar
  35. [35]
    J. Ware, R. Saotome and R. Akhoury, Construction of an asymptotic S matrix for perturbative quantum gravity, JHEP 10 (2013) 159 [arXiv:1308.6285] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S. Choi, U. Kol and R. Akhoury, Asymptotic dynamics in perturbative quantum gravity and BMS supertranslations, JHEP 01 (2018) 142 [arXiv:1708.05717] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  37. [37]
    S. Choi and R. Akhoury, BMS supertranslation symmetry implies Faddeev-Kulish amplitudes, JHEP 02 (2018) 171 [arXiv:1712.04551] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    A. Strominger and A. Zhiboedov, Gravitational memory, BMS supertranslations and soft theorems, JHEP 01 (2016) 086 [arXiv:1411.5745] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    M. Campiglia and A. Laddha, Asymptotic symmetries of gravity and soft theorems for massive particles, JHEP 12 (2015) 094 [arXiv:1509.01406] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  40. [40]
    M. Campiglia, Null to time-like infinity Green’s functions for asymptotic symmetries in Minkowski spacetime, JHEP 11 (2015) 160 [arXiv:1509.01408] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Center for Cosmology and Particle Physics, Department of PhysicsNew York UniversityNew YorkU.S.A.
  2. 2.Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan

Personalised recommendations