Advertisement

Same-sign multilepton signatures of an SU(2)R quintuplet at the LHC

  • Sanjib Kumar Agarwalla
  • Kirtiman Ghosh
  • Nilanjana Kumar
  • Ayon Patra
Open Access
Regular Article - Theoretical Physics

Abstract

We study in detail the collider signatures of an SU(2)R fermionic quintuplet in the framework of left-right symmetric model in the context of the 13 TeV LHC. Apart from giving a viable dark matter candidate (χ0), this model provides unique collider imprints in the form of same-sign multileptons through the decays of multi-charged components of the quintuplet. In particular, we consider the scenario where the quintuplet carries (BL) = 4 charge, allowing for the presence of high charge-multiplicity particles with relatively larger mass differences among them compared to (BL) = 0 or 2. In this paper, we mainly focus on the same-sign n-lepton signatures (nSSL). We show that with an integrated luminosity of 500 fb−1, the mass of the neutral component, \( {M}_{\chi^0} \) ≤ 480 (800) GeV can be excluded at 95% CL in the 2SSL (3SSL) channel after imposing several selection criteria. We also show that a 5σ discovery is also achievable if \( {M}_{\chi^0} \) ≤ 390 (750) GeV in the 2SSL (3SSL) channel with 1000 fb−1 integrated luminosity.

Keywords

Beyond Standard Model Higgs Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P. Ko and T. Nomura, SU(2)L × SU(2)R minimal dark matter with 2 TeV W′, Phys. Lett. B 753 (2016) 612 [arXiv:1510.07872] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    S.K. Agarwalla, K. Ghosh and A. Patra, LHC diphoton excess in a left-right symmetric model with minimal dark matter, arXiv:1607.03878 [INSPIRE].
  3. [3]
    S. Kumar Agarwalla, K. Ghosh and A. Patra, Sub-TeV quintuplet minimal dark matter with left-right symmetry, JHEP 05 (2018) 123 [arXiv:1803.01670] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].
  5. [5]
    J. Heeck and S. Patra, Minimal left-right symmetric dark matter, Phys. Rev. Lett. 115 (2015) 121804 [arXiv:1507.01584] [INSPIRE].
  6. [6]
    C. Garcia-Cely and J. Heeck, Phenomenology of left-right symmetric dark matter, arXiv:1512.03332 [INSPIRE].
  7. [7]
    N. Maru, N. Okada and S. Okada, Fermionic minimal dark matter in 5D gauge-Higgs unification, Phys. Rev. D 96 (2017) 115023 [arXiv:1801.00686] [INSPIRE].ADSGoogle Scholar
  8. [8]
    B. Ostdiek, Constraining the minimal dark matter fiveplet with LHC searches, Phys. Rev. D 92 (2015) 055008 [arXiv:1506.03445] [INSPIRE].
  9. [9]
    K. Kumericki, I. Picek and B. Radovcic, TeV-scale seesaw with quintuplet fermions, Phys. Rev. D 86 (2012) 013006 [arXiv:1204.6599] [INSPIRE].ADSGoogle Scholar
  10. [10]
    Y. Yu, C.-X. Yue and S. Yang, Signatures of the quintuplet leptons at the LHC, Phys. Rev. D 91 (2015) 093003 [arXiv:1502.02801] [INSPIRE].
  11. [11]
    R.N. Mohapatra and J.C. Pati, Left-right gauge symmetry and an isoconjugate model of CP-violation, Phys. Rev. D 11 (1975) 566 [INSPIRE].ADSGoogle Scholar
  12. [12]
    G. Senjanović and R.N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].ADSGoogle Scholar
  13. [13]
    M.A.B. Beg and H.S. Tsao, Strong P, T noninvariances in a superweak theory, Phys. Rev. Lett. 41 (1978) 278 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    R.N. Mohapatra and G. Senjanović, Natural suppression of strong P and T noninvariance, Phys. Lett. B 79 (1978) 283 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    K.S. Babu and R.N. Mohapatra, A solution to the strong CP problem without an axion, Phys. Rev. D 41 (1990) 1286 [INSPIRE].ADSGoogle Scholar
  16. [16]
    S.M. Barr, D. Chang and G. Senjanović, Strong CP problem and parity, Phys. Rev. Lett. 67 (1991) 2765 [INSPIRE].
  17. [17]
    R.N. Mohapatra and A. Rasin, Simple supersymmetric solution to the strong CP problem, Phys. Rev. Lett. 76 (1996) 3490 [hep-ph/9511391] [INSPIRE].
  18. [18]
    R. Kuchimanchi, Solution to the strong CP problem: supersymmetry with parity, Phys. Rev. Lett. 76 (1996) 3486 [hep-ph/9511376] [INSPIRE].
  19. [19]
    R.N. Mohapatra, A. Rasin and G. Senjanović, P, C and strong CP in left-right supersymmetric models, Phys. Rev. Lett. 79 (1997) 4744 [hep-ph/9707281] [INSPIRE].
  20. [20]
    K.S. Babu, B. Dutta and R.N. Mohapatra, Solving the strong CP and the SUSY phase problems with parity symmetry, Phys. Rev. D 65 (2002) 016005 [hep-ph/0107100] [INSPIRE].
  21. [21]
    R. Kuchimanchi, P/CP conserving CP/P violation solves strong CP problem, Phys. Rev. D 82 (2010) 116008 [arXiv:1009.5961] [INSPIRE].
  22. [22]
    R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].
  23. [23]
    B. Mukhopadhyaya and S. Mukhopadhyay, Same-sign trileptons and four-leptons as signatures of new physics at the CERN Large Hadron Collider, Phys. Rev. D 82 (2010) 031501 [arXiv:1005.3051] [INSPIRE].ADSGoogle Scholar
  24. [24]
    S. Mukhopadhyay and B. Mukhopadhyaya, Same-sign trileptons at the LHC: a window to lepton-number violating supersymmetry, Phys. Rev. D 84 (2011) 095001 [arXiv:1108.4921] [INSPIRE].ADSGoogle Scholar
  25. [25]
    G. Bambhaniya, J. Chakrabortty, S. Goswami and P. Konar, Generation of neutrino mass from new physics at TeV scale and multilepton signatures at the LHC, Phys. Rev. D 88 (2013) 075006 [arXiv:1305.2795] [INSPIRE].
  26. [26]
    E.J. Chun and P. Sharma, Same-sign tetra-leptons from type II seesaw, JHEP 08 (2012) 162 [arXiv:1206.6278] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    CMS collaboration, Search for physics beyond the Standard Model in events with two leptons of same sign, missing transverse momentum and jets in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Eur. Phys. J. C 77 (2017) 578 [arXiv:1704.07323] [INSPIRE].
  28. [28]
    ATLAS collaboration, Inclusive search for same-sign dilepton signatures in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 10 (2011) 107 [arXiv:1108.0366] [INSPIRE].
  29. [29]
    ATLAS collaboration, Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 04 (2015)116 [arXiv:1501.03555] [INSPIRE].
  30. [30]
    ATLAS collaboration, Search for squarks and gluinos in events with an isolated lepton, jets and missing transverse momentum at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 96 (2017)112010 [arXiv:1708.08232] [INSPIRE].
  31. [31]
    ATLAS collaboration, Search for new phenomena using the invariant mass distribution of same-flavour opposite-sign dilepton pairs in events with missing transverse momentum in \( \sqrt{s}=13 \) TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 78 (2018) 625 [arXiv:1805.11381] [INSPIRE].
  32. [32]
    CMS collaboration, Search for new physics in events with two soft oppositely charged leptons and missing transverse momentum in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Lett. B 782 (2018) 440 [arXiv:1801.01846] [INSPIRE].
  33. [33]
    P. Minkowski, μeγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
  34. [34]
    T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].
  35. [35]
    O. Sawada and A. Sugamoto eds., Proceedings: workshop on the unified theories and the baryon number in the universe, Natl. Lab. High Energy Phys., Tsukuba, Japan (1979) [INSPIRE].
  36. [36]
    M. Lévy, J.L. Basdevant, D. Speiser, J. Weyers, R. Gastmans and M. Jacob eds., Quarks and leptons. Proceedings, summer institute, Cargèse, France, 929 July 1979, NATO Sci. Ser. B 61 (1980)1 [INSPIRE].
  37. [37]
    P. Van Nieuwenhuizen and D.Z. Freedman eds., Supergravity. Proceedings, workshop at Stony Brook, 2729 September 1979, North-Holland, Amsterdam, The Netherlands (1979) [INSPIRE].
  38. [38]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    D. Chang, R.N. Mohapatra and M.K. Parida, Decoupling parity and SU(2)R breaking scales: a new approach to left-right symmetric models, Phys. Rev. Lett. 52 (1984) 1072 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    NNPDF collaboration, Parton distributions for the LHC run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  41. [41]
    NNPDF collaboration, Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290 [arXiv:1308.0598] [INSPIRE].
  42. [42]
    A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Parton distributions incorporating QED contributions, Eur. Phys. J. C 39 (2005) 155 [hep-ph/0411040] [INSPIRE].
  43. [43]
    C. Schmidt, J. Pumplin, D. Stump and C.P. Yuan, CT14QED parton distribution functions from isolated photon production in deep inelastic scattering, Phys. Rev. D 93 (2016) 114015 [arXiv:1509.02905] [INSPIRE].ADSGoogle Scholar
  44. [44]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  45. [45]
    N.D. Christensen and C. Duhr, FeynRules — Feynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  49. [49]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  50. [50]
    DELPHES 3 collaboration, DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  51. [51]
    CMS collaboration, Study of vector boson scattering and search for new physics in events with two same-sign leptons and two jets, Phys. Rev. Lett. 114 (2015) 051801 [arXiv:1410.6315] [INSPIRE].
  52. [52]
    J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE].
  53. [53]
    F. Campanario, V. Hankele, C. Oleari, S. Prestel and D. Zeppenfeld, QCD corrections to charged triple vector boson production with leptonic decay, Phys. Rev. D 78 (2008) 094012 [arXiv:0809.0790] [INSPIRE].ADSGoogle Scholar
  54. [54]
    M.V. Garzelli, A. Kardos, C.G. Papadopoulos and Z. Trócsányi, \( t\overline{t}{W}^{\pm } \) and \( t\overline{t}Z \) hadroproduction at NLO accuracy in QCD with parton shower and hadronization effects, JHEP 11 (2012) 056 [arXiv:1208.2665] [INSPIRE].
  55. [55]
    LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].
  56. [56]
    Y.-B. Shen, R.-Y. Zhang, W.-G. Ma, X.-Z. Li, Y. Zhang and L. Guo, NLO QCD + NLO EW corrections to WZZ productions with leptonic decays at the LHC, JHEP 10 (2015) 186 [Erratum ibid. 10 (2016) 156] [arXiv:1507.03693] [INSPIRE].
  57. [57]
    D.T. Nhung, L.D. Ninh and M.M. Weber, NLO corrections to WWZ production at the LHC, JHEP 12 (2013) 096 [arXiv:1307.7403] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to \( pp\to t\overline{t}b\overline{b}+X \) at the LHC, Phys. Rev. Lett. 103 (2009) 012002 [arXiv:0905.0110] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    G. Bevilacqua and M. Worek, Constraining BSM physics at the LHC: four top final states with NLO accuracy in perturbative QCD, JHEP 07 (2012) 111 [arXiv:1206.3064] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    G. Cowan, Two developments in discovery tests: use of weighted Monte Carlo events and an improved measure of experimental sensitivity, talk given during the meeting on Progress on Statistical Issues in Searches, http://www-conf.slac.stanford.edu/statisticalissues2012/talks/glen_cowan_slac_4jun12.pdf, SLAC, Menlo Park, CA, U.S.A. 4–6 June 2012.
  61. [61]
    N. Kumar and S.P. Martin, Vectorlike leptons at the Large Hadron Collider, Phys. Rev. D 92 (2015) 115018 [arXiv:1510.03456] [INSPIRE].
  62. [62]
    V.E. Ozcan, S. Sultansoy and G. Unel, Possible discovery channel for new charged leptons at the LHC, J. Phys. G 36 (2009) 095002 [Erratum ibid. G 37 (2010) 059801] [arXiv:0903.3177] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Sanjib Kumar Agarwalla
    • 1
    • 2
  • Kirtiman Ghosh
    • 1
    • 2
  • Nilanjana Kumar
    • 3
  • Ayon Patra
    • 4
  1. 1.Institute of Physics, Sachivalaya MargBhubaneswarIndia
  2. 2.Homi Bhabha National InstituteMumbaiIndia
  3. 3.Saha Institute of Nuclear PhysicsHBNIKolkataIndia
  4. 4.Centre for High Energy PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations