Advertisement

Exact half-BPS black hole entropies in CHL models from Rademacher series

  • Richard NallyEmail author
Open Access
Regular Article - Theoretical Physics
  • 8 Downloads

Abstract

The microscopic spectrum of half-BPS excitations in toroidally compactified heterotic string theory has been computed exactly through the use of results from analytic number theory. Recently, similar quantities have been understood macroscopically by evaluating the gravitational path integral on the M-theory lift of the AdS2 near-horizon geometry of the corresponding black hole. In this paper, we generalize these results to a subset of the CHL models, which include the standard compactification of IIA on K3 × T2 as a special case. We begin by developing a Rademacher-like expansion for the Fourier coefficients of the partition functions for these theories, which are modular forms for congruence subgroups. We then describe a possible macroscopic interpretation of these results, emphasizing the role of twisted boundary conditions.

Keywords

AdS-CFT Correspondence Black Holes in String Theory Extended Supersymmetry Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    A. Dabholkar, Exact counting of black hole microstates, Phys. Rev. Lett. 94 (2005) 241301 [hep-th/0409148] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    A. Dabholkar, F. Denef, G.W. Moore and B. Pioline, Exact and asymptotic degeneracies of small black holes, JHEP 08 (2005) 021 [hep-th/0502157] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    A. Dabholkar, F. Denef, G.W. Moore and B. Pioline, Precision counting of small black holes, JHEP 10 (2005) 096 [hep-th/0507014] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    A. Dabholkar, R. Kallosh and A. Maloney, A Stringy cloak for a classical singularity, JHEP 12 (2004) 059 [hep-th/0410076] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    K. Ranestad, J. Bruinier, G. van der Geer, G. Harder and D. Zagier, The 1-2-3 of Modular Forms: Lectures at a Summer School in Nordfjordeid, Norway, Universitext, Springer Berlin Heidelberg (2008) [DOI: https://doi.org/10.1007/978-3-540-74119-0].
  7. [7]
    H. Rademacher and H.S. Zuckerman, On the fourier coefficients of certain modular forms of positive dimension, Annals Math. 39 (1938) 433.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    H. Rademacher, On the expansion of the partition function in a series, Annals Math. 44 (1943) 416.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    T. Apostol, Modular Functions and Dirichlet Series in Number Theory, Graduate Texts in Mathematics, Springer New York (1976) [DOI: https://doi.org/10.1007/978-1-4612-0999-7].
  10. [10]
    H. Rademacher, Topics in Analytic Number Theory, Grundlehren der mathematischen Wissenschaften, Springer Berlin Heidelberg (2012) [DOI: https://doi.org/10.1007/978-3-642-80615-5].
  11. [11]
    R. Dijkgraaf, J.M. Maldacena, G.W. Moore and E.P. Verlinde, A Black hole Farey tail, hep-th/0005003 [INSPIRE].
  12. [12]
    M.C.N. Cheng and J.F.R. Duncan, Rademacher Sums and Rademacher Series, Contrib. Math. Comput. Sci. 8 (2014) 143 [arXiv:1210.3066] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    A. Sen, Black Hole Entropy Function, Attractors and Precision Counting of Microstates, Gen. Rel. Grav. 40 (2008) 2249 [arXiv:0708.1270] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    A. Dabholkar and S. Nampuri, Quantum black holes, Lect. Notes Phys. 851 (2012) 165 [arXiv:1208.4814] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    A. Maloney and E. Witten, Quantum Gravity Partition Functions in Three Dimensions, JHEP 02 (2010) 029 [arXiv:0712.0155] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    S. Murthy and B. Pioline, A Farey tale for N = 4 dyons, JHEP 09 (2009) 022 [arXiv:0904.4253] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    C. Beasley, D. Gaiotto, M. Guica, L. Huang, A. Strominger and X. Yin, Why Z BH = |Z top|2, hep-th/0608021 [INSPIRE].
  18. [18]
    J. de Boer, M.C.N. Cheng, R. Dijkgraaf, J. Manschot and E. Verlinde, A Farey Tail for Attractor Black Holes, JHEP 11 (2006) 024 [hep-th/0608059] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  19. [19]
    J. Manschot and G.W. Moore, A Modern Farey Tail, Commun. Num. Theor. Phys. 4 (2010) 103 [arXiv:0712.0573] [INSPIRE].CrossRefzbMATHGoogle Scholar
  20. [20]
    A. Dabholkar, J. Gomes and S. Murthy, Quantum black holes, localization and the topological string, JHEP 06 (2011) 019 [arXiv:1012.0265] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    A. Dabholkar, J. Gomes and S. Murthy, Localization & Exact Holography, JHEP 04 (2013) 062 [arXiv:1111.1161] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    J. Gomes, Quantum entropy of supersymmetric black holes, arXiv:1111.2025 [INSPIRE].
  23. [23]
    A. Dabholkar, J. Gomes and S. Murthy, Nonperturbative black hole entropy and Kloosterman sums, JHEP 03 (2015) 074 [arXiv:1404.0033] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    N. Banerjee, S. Banerjee, R.K. Gupta, I. Mandal and A. Sen, Supersymmetry, Localization and Quantum Entropy Function, JHEP 02 (2010) 091 [arXiv:0905.2686] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    J. Gomes, Quantum Black Hole Entropy, Localization and the Stringy Exclusion Principle, JHEP 09 (2018) 132 [arXiv:1705.01953] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    J. Gomes, Generalized Kloosterman Sums from M2-branes, arXiv:1705.04348 [INSPIRE].
  27. [27]
    J. Gomes, Exact Holography and Black Hole Entropy in \( \mathcal{N} \) = 8 and \( \mathcal{N} \) = 4 String Theory, JHEP 07 (2017) 022 [arXiv:1511.07061] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    S. Murthy and V. Reys, Functional determinants, index theorems and exact quantum black hole entropy, JHEP 12 (2015) 028 [arXiv:1504.01400] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  29. [29]
    S. Murthy and V. Reys, Single-centered black hole microstate degeneracies from instantons in supergravity, JHEP 04 (2016) 052 [arXiv:1512.01553] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  30. [30]
    S. Chaudhuri, G. Hockney and J.D. Lykken, Maximally supersymmetric string theories in D < 10, Phys. Rev. Lett. 75 (1995) 2264 [hep-th/9505054] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    S. Chaudhuri and J. Polchinski, Moduli space of CHL strings, Phys. Rev. D 52 (1995) 7168 [hep-th/9506048] [INSPIRE].ADSGoogle Scholar
  32. [32]
    S. Chaudhuri and D.A. Lowe, Type IIA heterotic duals with maximal supersymmetry, Nucl. Phys. B 459 (1996) 113 [hep-th/9508144] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    D.P. Jatkar and A. Sen, Dyon spectrum in CHL models, JHEP 04 (2006) 018 [hep-th/0510147] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    J.R. David and A. Sen, CHL Dyons and Statistical Entropy Function from D1-D5 System, JHEP 11 (2006) 072 [hep-th/0605210] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    S. Govindarajan and K. Gopala Krishna, BKM Lie superalgebras from dyon spectra in Z(N) CHL orbifolds for composite N, JHEP 05 (2010) 014 [arXiv:0907.1410] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    S. Govindarajan, BKM Lie superalgebras from counting twisted CHL dyons, JHEP 05 (2011) 089 [arXiv:1006.3472] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    D. Persson and R. Volpato, Fricke S-duality in CHL models, JHEP 12 (2015) 156 [arXiv:1504.07260] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  38. [38]
    N.M. Paquette, R. Volpato and M. Zimet, No More Walls! A Tale of Modularity, Symmetry and Wall Crossing for 1/4 BPS Dyons, JHEP 05 (2017) 047 [arXiv:1702.05095] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    M.C.N. Cheng, S.M. Harrison, R. Volpato and M. Zimet, K3 String Theory, Lattices and Moonshine, arXiv:1612.04404 [INSPIRE].
  40. [40]
    M.R. Gaberdiel, S. Hohenegger and R. Volpato, Symmetries of K3 σ-models, Commun. Num. Theor. Phys. 6 (2012) 1 [arXiv:1106.4315] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    J.F. Duncan and I.B. Frenkel, Rademacher sums, Moonshine and Gravity, Commun. Num. Theor. Phys. 5 (2011) 849 [arXiv:0907.4529] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    D. Persson and R. Volpato, Dualities in CHL-Models, J. Phys. A 51 (2018) 164002 [arXiv:1704.00501] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  43. [43]
    V.V. Nikulin, K3 surfaces with interesting groups of automorphisms, alg-geom/9701011.
  44. [44]
    Y.-H. He and J. McKay, Eta Products, BPS States and K3 Surfaces, JHEP 01 (2014) 113 [arXiv:1308.5233] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    G. Bossard, C. Cosnier-Horeau and B. Pioline, Four-derivative couplings and BPS dyons in heterotic CHL orbifolds, SciPost Phys. 3 (2017) 008 [arXiv:1702.01926] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    J.F.R. Duncan, M.J. Griffin and K. Ono, Moonshine, arXiv:1411.6571 [INSPIRE].
  47. [47]
    S. Banerjee, A. Sen and Y.K. Srivastava, Generalities of Quarter BPS Dyon Partition Function and Dyons of Torsion Two, JHEP 05 (2008) 101 [arXiv:0802.0544] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    E. Sussman, Rademacher Series for η-Quotients, arXiv:1710.03415.
  49. [49]
    N. Prabhakar, On the exact entropy of half-bps black holes in heterotic string theory, MSc Thesis, Institute of Mathematical Sciences (2012).Google Scholar
  50. [50]
    D. Whalen, Vector-Valued Rademacher Sums and Automorphic Integrals, arXiv:1406.0571.
  51. [51]
    R.K. Gupta and S. Murthy, All solutions of the localization equations for N = 2 quantum black hole entropy, JHEP 02 (2013) 141 [arXiv:1208.6221] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    G. Lopes Cardoso, B. de Wit and T. Mohaupt, Macroscopic entropy formulae and nonholomorphic corrections for supersymmetric black holes, Nucl. Phys. B 567 (2000) 87 [hep-th/9906094] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  53. [53]
    A. Sen, Extremal black holes and elementary string states, Mod. Phys. Lett. A 10 (1995) 2081 [hep-th/9504147] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes, Phys. Rev. D 52 (1995) R5412 [hep-th/9508072] [INSPIRE].ADSMathSciNetGoogle Scholar
  55. [55]
    S. Ferrara and R. Kallosh, Supersymmetry and attractors, Phys. Rev. D 54 (1996) 1514 [hep-th/9602136] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  56. [56]
    A. Sen, Entropy Function and AdS 2 /CFT 1 Correspondence, JHEP 11 (2008) 075 [arXiv:0805.0095] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    A. Sen, Quantum Entropy Function from AdS 2 /CFT 1 Correspondence, Int. J. Mod. Phys. A 24 (2009) 4225 [arXiv:0809.3304] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  58. [58]
    A. Sen, Arithmetic of Quantum Entropy Function, JHEP 08 (2009) 068 [arXiv:0903.1477] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    J. Gomes, Quantum entropy and exact 4d/5d connection, JHEP 01 (2015) 109 [arXiv:1305.2849] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  60. [60]
    J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  61. [61]
    B. de Wit and S. Katmadas, Near-Horizon Analysis of D = 5 BPS Black Holes and Rings, JHEP 02 (2010) 056 [arXiv:0910.4907] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    N. Banerjee, B. de Wit and S. Katmadas, The Off-Shell 4D/5D Connection, JHEP 03 (2012) 061 [arXiv:1112.5371] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    J. Gomes, U-duality Invariant Quantum Entropy from Sums of Kloosterman Sums, arXiv:1709.06579 [INSPIRE].
  64. [64]
    A. Sen, A Twist in the Dyon Partition Function, JHEP 05 (2010) 028 [arXiv:0911.1563] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    A. Sen, Discrete Information from CHL Black Holes, JHEP 11 (2010) 138 [arXiv:1002.3857] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    A. Chowdhury, R.K. Gupta, S. Lal, M. Shyani and S. Thakur, Logarithmic Corrections to Twisted Indices from the Quantum Entropy Function, JHEP 11 (2014) 002 [arXiv:1404.6363] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  67. [67]
    F. Ferrari and V. Reys, Mixed Rademacher and BPS Black Holes, JHEP 07 (2017) 094 [arXiv:1702.02755] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  68. [68]
    H. Larson, Coefficients of McKay-Thompson series and distributions of the moonshine module, arXiv:1508.03742.
  69. [69]
    N.M. Paquette, D. Persson and R. Volpato, Monstrous BPS-Algebras and the Superstring Origin of Moonshine, Commun. Num. Theor. Phys. 10 (2016) 433 [arXiv:1601.05412] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  70. [70]
    N.M. Paquette, D. Persson and R. Volpato, BPS Algebras, Genus Zero and the Heterotic Monster, J. Phys. A 50 (2017) 414001 [arXiv:1701.05169] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  71. [71]
    E. Witten, Three-Dimensional Gravity Revisited, arXiv:0706.3359 [INSPIRE].
  72. [72]
    M. Zimet, Umbral Moonshine and String Duality, arXiv:1803.07567 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsStanford UniversityStanfordU.S.A.

Personalised recommendations