Advertisement

Constraining quantum fields using modular theory

  • Nima LashkariEmail author
Open Access
Regular Article - Theoretical Physics
  • 23 Downloads

Abstract

Tomita-Takesaki modular theory provides a set of algebraic tools in quantum field theory that is suitable for the study of the information-theoretic properties of states. For every open set in spacetime and choice of two states, the modular theory defines a positive operator known as the relative modular operator that decreases monotonically under restriction to subregions. We study the consequences of this operator monotonicity inequality for correlation functions in quantum field theory. We do so by constructing a one-parameter Rényi family of information-theoretic measures from the relative modular operator that inherit monotonicity by construction and reduce to correlation functions in special cases. In the case of finite quantum systems, this Rényi family is the sandwiched Rényi divergence and we obtain a simple proof of its monotonicity. Its monotonicity implies a class of constraints on correlation functions in quantum field theory, only a small set of which were known to us. We explore these inequalities for free fields and conformal field theory. We conjecture that the second null derivative of Rényi divergence is non-negative which is a generalization of the quantum null energy condition to the Rényi family.

Keywords

Field Theories in Higher Dimensions Space-Time Symmetries 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    H. Casini and M. Huerta, A Finite entanglement entropy and the c-theorem, Phys. Lett. B 600 (2004) 142 [hep-th/0405111] [INSPIRE].
  2. [2]
    H. Casini and M. Huerta, On the RG running of the entanglement entropy of a circle, Phys. Rev. D 85 (2012) 125016 [arXiv:1202.5650] [INSPIRE].
  3. [3]
    H. Casini, E. Testé and G. Torroba, Markov Property of the Conformal Field Theory Vacuum and the a Theorem, Phys. Rev. Lett. 118 (2017) 261602 [arXiv:1704.01870] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    T. Faulkner, R.G. Leigh, O. Parrikar and H. Wang, Modular Hamiltonians for Deformed Half-Spaces and the Averaged Null Energy Condition, JHEP 09 (2016) 038 [arXiv:1605.08072] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A.C. Wall, A proof of the generalized second law for rapidly changing fields and arbitrary horizon slices, Phys. Rev. D 85 (2012) 104049 [arXiv:1105.3445] [INSPIRE].
  6. [6]
    E. Witten, APS Medal for Exceptional Achievement in Research: Invited article on entanglement properties of quantum field theory, Rev. Mod. Phys. 90 (2018) 045003 [arXiv:1803.04993] [INSPIRE].
  7. [7]
    R. Haag, Local quantum physics: Fields, particles, algebras, Springer (1992) [INSPIRE].
  8. [8]
    H. Araki, Relative entropy of states of von neumann algebras, Publ. Res. Inst. Math. Sci. Kyoto 11 (1976) 809 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    V. Vedral, The role of relative entropy in quantum information theory, Rev. Mod. Phys. 74 (2002) 197 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    H. Araki and T. Masuda, Positive cones and lp-spaces for von neumann algebras, Publ. Res. Inst. Math. Sci. Kyoto 18 (1982) 759.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    V. Jaksic, Y. Ogata, Y. Pautrat and C.-A. Pillet, Entropic fluctuations in quantum statistical mechanics. An introduction, arXiv:1106.3786.
  12. [12]
    A. Jencová, Rényi relative entropies and noncommutative l p -spaces, arXiv:1609.08462.
  13. [13]
    M. Berta, V.B. Scholz and M. Tomamichel, Rényi Divergences as Weighted Non-commutative Vector-Valued L p -Spaces, Annales Henri Poincaré 19 (2018) 1843 [arXiv:1608.05317] [INSPIRE].
  14. [14]
    R.L. Frank and E.H. Lieb, Monotonicity of a relative Rényi entropy, J. Math. Phys. 54 (2013) 122201 [arXiv:1306.5358].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    S. Beigi, Sandwiched Rényi divergence satisfies data processing inequality, J. Math. Phys. 54 (2013) 122202 [arXiv:1306.5920].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    N. Lashkari, Relative Entropies in Conformal Field Theory, Phys. Rev. Lett. 113 (2014) 051602 [arXiv:1404.3216] [INSPIRE].
  17. [17]
    V.F.R. Jones., Von Neumann Algebras, (1992) [INSPIRE].
  18. [18]
    H.J. Borchers, On revolutionizing quantum field theory with Tomita’s modular theory, J. Math. Phys. 41 (2000) 3604 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    M.A. Nielsen and D. Petz, A simple proof of the strong subadditivity inequality, quant-ph/0408130.
  20. [20]
    D. Petz, Quasi-entropies for states of a von neumann algebra, Publ. Res. Inst. Math. Sci. Kyoto 21 (1985) 787.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr and M. Tomamichel, On quantum Rényi entropies: A new generalization and some properties, J. Math. Phys. 54 (2013) 122203.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    M.M. Wilde, A. Winter and D. Yang, Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy, Commun. Math. Phys. 331 (2014) 593 [arXiv:1306.1586] [INSPIRE].
  23. [23]
    R. Haag and J.A. Swieca, When does a quantum field theory describe particles?, Commun. Math. Phys. 1 (1965) 308.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    A. Uhlmann, The “transition probability” in the state space of a-algebra, Rept. Math. Phys. 9 (1976) 273.Google Scholar
  25. [25]
    M.M. Wilde, Optimized quantum f-divergences and data processing, arXiv:1710.10252 [INSPIRE].
  26. [26]
    N. Lashkari, H. Liu and S. Rajagopal, Modular Flow of Excited States, arXiv:1811.05052 [INSPIRE].
  27. [27]
    A. Bernamonti, F. Galli, R.C. Myers and J. Oppenheim, Holographic second laws of black hole thermodynamics, JHEP 07 (2018) 111 [arXiv:1803.03633] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    H. Casini, E. Teste and G. Torroba, Modular Hamiltonians on the null plane and the Markov property of the vacuum state, J. Phys. A 50 (2017) 364001 [arXiv:1703.10656] [INSPIRE].
  29. [29]
    N. Lashkari, Entanglement at a Scale and Renormalization Monotones, arXiv:1704.05077 [INSPIRE].
  30. [30]
    K. Osterwalder and R. Schrader, Axioms for Euclidean Green’s Functions. 2., Commun. Math. Phys. 42 (1975) 281 [INSPIRE].
  31. [31]
    R. Bousso, Z. Fisher, S. Leichenauer and A.C. Wall, Quantum focusing conjecture, Phys. Rev. D 93 (2016) 064044 [arXiv:1506.02669] [INSPIRE].
  32. [32]
    S. Balakrishnan, T. Faulkner, Z.U. Khandker and H. Wang, A General Proof of the Quantum Null Energy Condition, arXiv:1706.09432 [INSPIRE].
  33. [33]
    H. Casini, R. Medina, I. Salazar Landea and G. Torroba, Rényi relative entropies and renormalization group flows, JHEP 09 (2018) 166 [arXiv:1807.03305] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    P. Francesco, P. Mathieu and D. Sénéchal, Conformal field theory, Springer Science & Business Media (2012) [INSPIRE].
  35. [35]
    S. Bernstein, Sur les fonctions absolument monotones, Acta Math. 52 (1929) 1.MathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    P. Calabrese, F.H. Essler and A.M. Läuchli, Entanglement entropies of the quarter filled hubbard model, J. Stat. Mech. 9 (2014) 09025 [arXiv:1406.7477].
  37. [37]
    N. Lashkari, J. Lin, H. Ooguri, B. Stoica and M. Van Raamsdonk, Gravitational positive energy theorems from information inequalities, PTEP 2016 (2016) 12C109 [arXiv:1605.01075] [INSPIRE].
  38. [38]
    F. Brandao, M. Horodecki, N. Ng, J. Oppenheim and S. Wehner, The second laws of quantum thermodynamics, Proc. Nat. Acad. Sci. 112 (2015) 3275 [arXiv:1305.5278].ADSCrossRefGoogle Scholar
  39. [39]
    T. Hartman, S. Kundu and A. Tajdini, Averaged Null Energy Condition from Causality, JHEP 07 (2017) 066 [arXiv:1610.05308] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    R.L. Schilling, R. Song and Z. Vondracek, Bernstein functions: theory and applications, vol. 37, Walter de Gruyter (2012).Google Scholar
  41. [41]
    E.H. Lieb and W.E. Thirring, Inequalities for the moments of the eigenvalues of the schrodinger hamiltonian and their relation to sobolev inequalities, in The Stability of Matter: From Atoms to Stars, pp. 135-169, Springer (1991).Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.School of Natural Sciences, Institute for Advanced StudyPrincetonU.S.A.

Personalised recommendations