Magnetotransport of Weyl semimetals with ℤ2 topological charge and chiral anomaly

  • Marek RogatkoEmail author
  • Karol I. Wysokinski
Open Access
Regular Article - Theoretical Physics


We calculate the magnetoconductivity of the Weyl semimetal with ℤ2 topological charge and chiral anomaly utilizing the recently developed hydrodynamic theory. The system in question will be influenced by magnetic fields connected with ordinary Maxwell and the second U(1)-gauge field, which couples to the anomalous topological charge. The presence of chiral anomaly and ℤ2 topological charge endow the system with new transport coefficients. We start with the linear perturbations of the hydrodynamic equations and calculate the magnetoconductivity of this system. The holographic approach in the probe limit is implemented to obtain the explicit dependence of the longitudinal magneto-conductivities on the magnetic fields.


AdS-CFT Correspondence Holography and condensed matter physics (AdS/CMT) 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    D.E. Kharzeev, Parity violation in hot QCD: Why it can happen and how to look for it, Phys. Lett. B 633 (2006) 260 [hep-ph/0406125] [INSPIRE].
  2. [2]
    D.E. Kharzeev, The Chiral Magnetic Effect and Anomaly-Induced Transport, Prog. Part. Nucl. Phys. 75 (2014) 133 [arXiv:1312.3348] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    K. Fukushima, D.E. Kharzeev and H.J. Warringa, The Chiral Magnetic Effect, Phys. Rev. D 78 (2008) 074033 [arXiv:0808.3382] [INSPIRE].
  4. [4]
    D.E. Kharzeev and H.-U. Yee, Anomalies and time reversal invariance in relativistic hydrodynamics: the second order and higher dimensional formulations, Phys. Rev. D 84 (2011) 045025 [arXiv:1105.6360] [INSPIRE].
  5. [5]
    I. Gahramanov, T. Kalaydzhyan and I. Kirsch, Anisotropic hydrodynamics, holography and the chiral magnetic effect, Phys. Rev. D 85 (2012) 126013 [arXiv:1203.4259] [INSPIRE].
  6. [6]
    D.E. Kharzeev, The Chiral Magnetic Effect and Anomaly-Induced Transport, Prog. Part. Nucl. Phys. 75 (2014) 133 [arXiv:1312.3348] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M. Kaminski, C.F. Uhlemann, M. Bleicher and J. Schaffner-Bielich, Anomalous hydrodynamics kicks neutron stars, Phys. Lett. B 760 (2016) 170 [arXiv:1410.3833] [INSPIRE].
  8. [8]
    D.E. Kharzeev, J. Liao, S.A. Voloshin and G. Wang, Chiral magnetic and vortical effects in high-energy nuclear collisions — A status report, Prog. Part. Nucl. Phys. 88 (2016) 1 [arXiv:1511.04050] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    P.J.W. Moll, P. Kushwaha, N. Nandi, B. Schmidt and A.P. Mackenzie, Evidence for hydrodynamic electron flow in PdCoO 2, Science 351 (2016) 1061.Google Scholar
  10. [10]
    T.O. Wehling, A.M. Black-Schaffer and A.V. Balatsky, Dirac materials, Adv. Phys. 63 (2014) 1 [arXiv:1405.5774] [INSPIRE].
  11. [11]
    S.R. Elliott and M. Franz, Colloquium: Majorana Fermions in nuclear, particle and solid-state physics, Rev. Mod. Phys. 87 (2015) 137 [arXiv:1403.4976] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    B. Bradlyn et al., Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals, Science 353 (2016) 5037.Google Scholar
  13. [13]
    H. Kim et al., Beyond triplet: Unconventional superconductivity in a spin-3/2 topological semimetal, Sci. Adv. 4 (2018) eaao04513 [arXiv:1603.03375].
  14. [14]
    S.L. Adler, Axial-Vector Vertex in Spinor Electrodynamics, Phys. Rev. 177 (1969) 2426 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J.S. Bell and R. Jackiw, A PCAC puzzle: π 0γγ in the σ-model, Nuovo Cim. A 60 (1969) 47 [INSPIRE].
  16. [16]
    D.T. Son and P. Surówka, Hydrodynamics with Triangle Anomalies, Phys. Rev. Lett. 103 (2009) 191601 [arXiv:0906.5044] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    I. Amado, K. Landsteiner and F. Pena-Benitez, Anomalous transport coefficients from Kubo formulas in Holography, JHEP 05 (2011) 081 [arXiv:1102.4577] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    H.B. Nielsen and M. Ninomiya, Adler-Bell-Jackiw anomaly and Weyl fermions in crystal, Phys. Lett. B 130 (1983) 389 [INSPIRE].
  19. [19]
    D.T. Son and B.Z. Spivak, Chiral Anomaly and Classical Negative Magnetoresistance of Weyl Metals, Phys. Rev. B 88 (2013) 104412 [arXiv:1206.1627] [INSPIRE].
  20. [20]
    K. Landsteiner, Y. Liu and Y.-W. Sun, Negative magnetoresistivity in chiral fluids and holography, JHEP 03 (2015) 127 [arXiv:1410.6399] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    D. Roychowdhury, Magnetoconductivity in chiral Lifshitz hydrodynamics, JHEP 09 (2015) 145 [arXiv:1508.02002] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    A. Donos and J.P. Gauntlett, Novel metals and insulators from holography, JHEP 06 (2014) 007 [arXiv:1401.5077] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    Z. Zhou, J.-P. Wu and Y. Ling, DC and Hall conductivity in holographic massive Einstein-Maxwell-Dilaton gravity, JHEP 08 (2015) 067 [arXiv:1504.00535] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    M. Blake and D. Tong, Universal Resistivity from Holographic Massive Gravity, Phys. Rev. D 88 (2013) 106004 [arXiv:1308.4970] [INSPIRE].
  25. [25]
    A. Amoretti, A. Braggio, N. Maggiore, N. Magnoli and D. Musso, Thermo-electric transport in gauge/gravity models with momentum dissipation, JHEP 09 (2014) 160 [arXiv:1406.4134] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Amoretti, A. Braggio, N. Maggiore, N. Magnoli and D. Musso, Analytic dc thermoelectric conductivities in holography with massive gravitons, Phys. Rev. D 91 (2015) 025002 [arXiv:1407.0306] [INSPIRE].
  27. [27]
    R.A. Davison, Momentum relaxation in holographic massive gravity, Phys. Rev. D 88 (2013) 086003 [arXiv:1306.5792] [INSPIRE].
  28. [28]
    A. Lucas, S. Sachdev and K. Schalm, Scale-invariant hyperscaling-violating holographic theories and the resistivity of strange metals with random-field disorder, Phys. Rev. D 89 (2014) 066018 [arXiv:1401.7993] [INSPIRE].
  29. [29]
    P. Goswami, J.H. Pixley and S. Das Sarma, Axial anomaly and longitudinal magnetoresistance of a generic three dimensional metal, Phys. Rev. B 92 (2015) 075205 [arXiv:1503.02069] [INSPIRE].
  30. [30]
    A. Baumgartner, A. Karch and A. Lucas, Magnetoresistance in relativistic hydrodynamics without anomalies, JHEP 06 (2017) 054 [arXiv:1704.01592] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    M. Rogatko and K.I. Wysokinski, Two interacting current model of holographic Dirac fluid in graphene, Phys. Rev. D 97 (2018) 024053 [arXiv:1708.08051] [INSPIRE].
  32. [32]
    M. Rogatko and K.I. Wysokinski, Holographic calculation of the magneto-transport coefficients in Dirac semimetals, JHEP 01 (2018) 078 [arXiv:1712.01608] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    J. Xiong et al., Evidence for the chiral anomaly in the Dirac semimetal Na 3 Bi, Science 350 (2015) 413.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    Q. Li et al., Chiral magnetic effect in ZrTe 5, Nat. Phys. 12 (2016) 550 [arXiv:1412.6543] [INSPIRE].
  35. [35]
    C. Zhang et al., Observation of the Adler-Bell-Jackiw chiral anomaly in a Weyl semimetal, Nat. Commun. 7 (2016) 10735 [arXiv:1503.02630] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    X. Huang et al., Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs, Phys. Rev. X 5 (2015) 031023 [arXiv:1503.01304] [INSPIRE].
  37. [37]
    J. Gooth et al., Experimental signatures of the mixed axial-gravitational anomaly in the Weyl semimetal NbP, Nature 547 (2017) 324 [arXiv:1703.10682] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S.M. Young, S. Zaheer, J.C.Y. Teo, C.L. Kane, E.J. Mele and A.M. Rappe, Dirac semimetal in three dimensions, Phys. Rev. Lett. 108 (2012) 140405.ADSCrossRefGoogle Scholar
  39. [39]
    C.K. Chiu, J.C.Y. Teo, A.P. Schnyder and S. Ryu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys. 88 (2016) 035005 [arXiv:1505.03535] [INSPIRE].
  40. [40]
    B.J. Yang and N. Nagaosa, Classification of stable three-dimensional Dirac semimetals with nontrivial topology, Nat. Commun. 5 (2014) 4898.CrossRefGoogle Scholar
  41. [41]
    B.J. Yang, T. Morimoto and A. Furusaki, Topological charges of three-dimensional Dirac semimetals with rotation symmetry, Phys. Rev. B 92 (2015) 165120.Google Scholar
  42. [42]
    C. Fang, Y. Chen, H.Y. Kee and L. Fu, Topological nodal line semimetals with and without spin-orbital coupling, Phys. Rev. B 92 (2015) 081201(R).Google Scholar
  43. [43]
    S. Kobayashi and M. Sato, Topological Superconductivity in Dirac Semimetals, Phys. Rev. Lett. 115 (2015) 187001 [arXiv:1504.07408] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A.A. Burkov and Y.B. Kim, ℤ2 and Chiral Anomalies in Topological Dirac Semimetals, Phys. Rev. Lett. 117 (2016) 136602.Google Scholar
  45. [45]
    M. Rogatko and K.I. Wysokinski, Hydrodynamics of topological Dirac semi-metals with chiral and2 anomalies, JHEP 09 (2018) 136 [arXiv:1804.02202] [INSPIRE].
  46. [46]
    H.-J. Kim et al., Dirac versus Weyl Fermions in Topological Insulators: Adler-Bell-Jackiw Anomaly in Transport Phenomena, Phys. Rev. Lett. 111 (2013) 246603 [arXiv:1307.6990] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    K.-S. Kim, K.-S. Kim, H.-J. Kim and M. Sasaki, Boltzmann equation approach to anomalous transport in a Weyl metal, Phys. Rev. B 89 (2014) 195137 [arXiv:1402.4240] [INSPIRE].
  48. [48]
    S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev. B 76 (2007) 144502 [arXiv:0706.3215] [INSPIRE].
  49. [49]
    L.D. Landau and E.M. Lifshitz, Fluid Mechanics, Pergamon, New York U.S.A. (1959).Google Scholar
  50. [50]
    G.T. Horowitz and M.M. Roberts, Holographic Superconductors with Various Condensates, Phys. Rev. D 78 (2008) 126008 [arXiv:0810.1077] [INSPIRE].
  51. [51]
    M. Taylor-Robinson, More on counter-terms in the gravitational action and anomalies, hep-th/0002125 [INSPIRE].
  52. [52]
    S.Y. Xu et al., Observation of Fermi arc surface states in a topological metal, Science 347 (2015) 294 [arXiv:1501.01249].ADSCrossRefGoogle Scholar
  53. [53]
    M. Neupane et al., Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd 3 As 2, Nat. Commun. 5 (2014) 3786.Google Scholar
  54. [54]
    M. Neupane et al., Observation of topological nodal fermion semimetal phase in ZrSiS, Phys. Rev. B 93 (2016) 201104 [arXiv:1604.00720].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institute of PhysicsMaria Curie-Sklodowska UniversityLublinPoland

Personalised recommendations