On the connection between hydrodynamics and quantum chaos in holographic theories with stringy corrections

  • Sašo GrozdanovEmail author
Open Access
Regular Article - Theoretical Physics


Pole-skipping is a recently discovered signature of many-body quantum chaos in collective energy dynamics. It establishes a precise connection between resummed, all-order hydrodynamics and the underlying microscopic chaos. In this paper, we demonstrate the existence of pole-skipping in holographic conformal field theories with higher-derivative gravity duals. In particular, we first consider Einstein-Hilbert gravity deformed by curvature-squared (R2) corrections and then type IIB supergravity theory with the α 3R4 term, where α is set by the length of the fundamental string. The former case allows us to discuss the effects of leading-order 1/Nc corrections (with Nc being the number of colours of the dual gauge group) and phenomenological coupling constant dependence. In Einstein-Gauss-Bonnet theory, pole-skipping turns out to be valid non-perturbatively in the Gauss-Bonnet coupling. The α 3R4 deformation enables us to study perturbative inverse ’t Hooft coupling corrections (α 3 ∼ 13/2) in SU(Nc), \( \mathcal{N}=4 \) supersymmetric Yang-Mills theory with infinite Nc. While the maximal Lyapunov exponent characterising quantum chaos remains uncorrected, the butterfly velocity is shown to depend both on Nc and the coupling. Several implications of the relation between hydrodynamics and chaos are discussed, including an intriguing similarity between the dependence of the butterfly velocity and the ratio of shear viscosity to entropy density on stringy corrections.


AdS-CFT Correspondence Black Holes in String Theory Gauge-gravity correspondence Holography and condensed matter physics (AdS/CMT) 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    G. Policastro, D.T. Son and A.O. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [INSPIRE].
  3. [3]
    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Buchel and J.T. Liu, Universality of the shear viscosity in supergravity, Phys. Rev. Lett. 93 (2004) 090602 [hep-th/0311175] [INSPIRE].
  7. [7]
    D.T. Son and A.O. Starinets, Viscosity, black holes and quantum field theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].
  9. [9]
    A.O. Starinets, Quasinormal spectrum and the black hole membrane paradigm, Phys. Lett. B 670 (2009) 442 [arXiv:0806.3797] [INSPIRE].
  10. [10]
    A. Buchel, J.T. Liu and A.O. Starinets, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 707 (2005) 56 [hep-th/0406264] [INSPIRE].
  11. [11]
    A. Buchel, Resolving disagreement for η/s in a CFT plasma at finite coupling, Nucl. Phys. B 803 (2008) 166 [arXiv:0805.2683] [INSPIRE].
  12. [12]
    M. Haack and A. Yarom, Universality of second order transport coefficients from the gauge-string duality, Nucl. Phys. B 813 (2009) 140 [arXiv:0811.1794] [INSPIRE].
  13. [13]
    S. Grozdanov and A.O. Starinets, On the universal identity in second order hydrodynamics, JHEP 03 (2015) 007 [arXiv:1412.5685] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    E. Shaverin and A. Yarom, Universality of second order transport in Gauss-Bonnet gravity, JHEP 04 (2013) 013 [arXiv:1211.1979] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    S. Grozdanov and A.O. Starinets, Zero-viscosity limit in a holographic Gauss-Bonnet liquid, Theor. Math. Phys. 182 (2015) 61 [Teor. Mat. Fiz. 182 (2014) 76] [INSPIRE].
  16. [16]
    E. Shaverin, A breakdown of a universal hydrodynamic relation in Gauss-Bonnet gravity, arXiv:1509.05418 [INSPIRE].
  17. [17]
    S. Grozdanov and A.O. Starinets, Second-order transport, quasinormal modes and zero-viscosity limit in the Gauss-Bonnet holographic fluid, JHEP 03 (2017) 166 [arXiv:1611.07053] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    F. Bigazzi and A.L. Cotrone, An elementary stringy estimate of transport coefficients of large temperature QCD, JHEP 08 (2010) 128 [arXiv:1006.4634] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  19. [19]
    P. Kleinert and J. Probst, Second-order hydrodynamics and universality in non-conformal holographic fluids, JHEP 12 (2016) 091 [arXiv:1610.01081] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    S. Grozdanov and N. Kaplis, Constructing higher-order hydrodynamics: the third order, Phys. Rev. D 93 (2016) 066012 [arXiv:1507.02461] [INSPIRE].
  21. [21]
    U. Gürsoy and J. Tarrio, Horizon universality and anomalous conductivities, JHEP 10 (2015) 058 [arXiv:1410.1306] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    S. Grozdanov and N. Poovuttikul, Universality of anomalous conductivities in theories with higher-derivative holographic duals, JHEP 09 (2016) 046 [arXiv:1603.08770] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    S. Grozdanov, K. Schalm and V. Scopelliti, Black hole scrambling from hydrodynamics, Phys. Rev. Lett. 120 (2018) 231601 [arXiv:1710.00921] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Blake, H. Lee and H. Liu, A quantum hydrodynamical description for scrambling and many-body chaos, JHEP 10 (2018) 127 [arXiv:1801.00010] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    M. Blake, R.A. Davison, S. Grozdanov and H. Liu, Many-body chaos and energy dynamics in holography, JHEP 10 (2018) 035 [arXiv:1809.01169] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    Y. Bu and M. Lublinsky, All order linearized hydrodynamics from fluid-gravity correspondence, Phys. Rev. D 90 (2014) 086003 [arXiv:1406.7222] [INSPIRE].
  27. [27]
    Y. Bu and M. Lublinsky, Linearized fluid/gravity correspondence: from shear viscosity to all order hydrodynamics, JHEP 11 (2014) 064 [arXiv:1409.3095] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    M. Blake, Universal diffusion in incoherent black holes, Phys. Rev. D 94 (2016) 086014 [arXiv:1604.01754] [INSPIRE].
  30. [30]
    M. Blake, R.A. Davison and S. Sachdev, Thermal diffusivity and chaos in metals without quasiparticles, Phys. Rev. D 96 (2017) 106008 [arXiv:1705.07896] [INSPIRE].
  31. [31]
    M. Blake and A. Donos, Diffusion and chaos from near AdS 2 horizons, JHEP 02 (2017) 013 [arXiv:1611.09380] [INSPIRE].
  32. [32]
    F.M. Haehl and M. Rozali, Effective field theory for chaotic CFTs, JHEP 10 (2018) 118 [arXiv:1808.02898] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    J. Cotler and K. Jensen, A theory of reparameterizations for AdS 3 gravity, arXiv:1808.03263 [INSPIRE].
  34. [34]
    M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity bound violation in higher derivative gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [INSPIRE].
  35. [35]
    A. Buchel, R.C. Myers and A. Sinha, Beyond η/s = 1/4π, JHEP 03 (2009) 084 [arXiv:0812.2521] [INSPIRE].
  36. [36]
    S. Grozdanov, N. Kaplis and A.O. Starinets, From strong to weak coupling in holographic models of thermalization, JHEP 07 (2016) 151 [arXiv:1605.02173] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality constraints on corrections to the graviton three-point coupling, JHEP 02 (2016) 020 [arXiv:1407.5597] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    S. Grozdanov and W. van der Schee, Coupling constant corrections in a holographic model of heavy ion collisions, Phys. Rev. Lett. 119 (2017) 011601 [arXiv:1610.08976] [INSPIRE].
  39. [39]
    T. Andrade, J. Casalderrey-Solana and A. Ficnar, Holographic isotropisation in Gauss-Bonnet gravity, JHEP 02 (2017) 016 [arXiv:1610.08987] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    M. Atashi, K. Bitaghsir Fadafan and G. Jafari, Linearized holographic isotropization at finite coupling, Eur. Phys. J. C 77 (2017) 430 [arXiv:1611.09295] [INSPIRE].
  41. [41]
    B.S. DiNunno, S. Grozdanov, J.F. Pedraza and S. Young, Holographic constraints on Bjorken hydrodynamics at finite coupling, JHEP 10 (2017) 110 [arXiv:1707.08812] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    S. Grozdanov, A. Lucas and N. Poovuttikul, Holography and hydrodynamics with weakly broken symmetries, arXiv:1810.10016 [INSPIRE].
  43. [43]
    Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP 01 (2009) 044 [arXiv:0712.0743] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    O. Aharony, A. Fayyazuddin and J.M. Maldacena, The large N limit of N = 2, N = 1 field theories from three-branes in F-theory, JHEP 07 (1998) 013 [hep-th/9806159] [INSPIRE].
  45. [45]
    F. Denef, S.A. Hartnoll and S. Sachdev, Quantum oscillations and black hole ringing, Phys. Rev. D 80 (2009) 126016 [arXiv:0908.1788] [INSPIRE].
  46. [46]
    F. Denef, S.A. Hartnoll and S. Sachdev, Black hole determinants and quasinormal modes, Class. Quant. Grav. 27 (2010) 125001 [arXiv:0908.2657] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    S. Caron-Huot and O. Saremi, Hydrodynamic long-time tails from anti de Sitter space, JHE 11 (2010) 013 [arXiv:0909.4525] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  48. [48]
    A. Arabi Ardehali, J.T. Liu and P. Szepietowski, The spectrum of IIB supergravity on AdS 5 × S 5 /Z 3 and a 1/N 2 test of AdS/CFT, JHEP 06 (2013) 024 [arXiv:1304.1540] [INSPIRE].
  49. [49]
    A. Arabi Ardehali, J.T. Liu and P. Szepietowski, 1/N 2 corrections to the holographic Weyl anomaly, JHEP 01 (2014) 002 [arXiv:1310.2611] [INSPIRE].
  50. [50]
    P. Arnold, P. Szepietowski and D. Vaman, Computing black hole partition functions from quasinormal modes, JHEP 07 (2016) 032 [arXiv:1603.08994] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    D.A. Roberts, D. Stanford and L. Susskind, Localized shocks, JHEP 03 (2015) 051 [arXiv:1409.8180] [INSPIRE].
  52. [52]
    M. Alishahiha, A. Davody, A. Naseh and S.F. Taghavi, On butterfly effect in higher derivative gravities, JHEP 11 (2016) 032 [arXiv:1610.02890] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    M. Mezei and D. Stanford, On entanglement spreading in chaotic systems, JHEP 05 (2017) 065 [arXiv:1608.05101] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    M.M. Qaemmaqami, Butterfly effect in 3D gravity, Phys. Rev. D 96 (2017) 106012 [arXiv:1707.00509] [INSPIRE].
  55. [55]
    S.S. Gubser, I.R. Klebanov and A.A. Tseytlin, Coupling constant dependence in the thermodynamics of N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 534 (1998) 202 [hep-th/9805156] [INSPIRE].
  56. [56]
    J. Pawelczyk and S. Theisen, AdS 5 × S 5 black hole metric at O(α ′ 3), JHEP 09 (1998) 010 [hep-th/9808126] [INSPIRE].
  57. [57]
    S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132 [arXiv:1412.6087] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    I. Kukuljan, S. Grozdanov and T. Prosen, Weak quantum chaos, Phys. Rev. B 96 (2017) 060301 [arXiv:1701.09147] [INSPIRE].
  59. [59]
    J. Casalderrey-Solana, S. Grozdanov and A.O. Starinets, Transport peak in the thermal spectral function of N = 4 supersymmetric Yang-Mills plasma at intermediate coupling, Phys. Rev. Lett. 121 (2018) 191603 [arXiv:1806.10997] [INSPIRE].
  60. [60]
    H. Gharibyan, M. Hanada, B. Swingle and M. Tezuka, Quantum Lyapunov spectrum, arXiv:1809.01671 [INSPIRE].
  61. [61]
    V. Khemani, D.A. Huse and A. Nahum, Velocity-dependent Lyapunov exponents in many-body quantum, semiclassical and classical chaos, Phys. Rev. B 98 (2018) 144304 [arXiv:1803.05902] [INSPIRE].
  62. [62]
    S. Xu and B. Swingle, Accessing scrambling using matrix product operators, arXiv:1802.00801 [INSPIRE].
  63. [63]
    S. Xu and B. Swingle, Locality, quantum fluctuations and scrambling, arXiv:1805.05376 [INSPIRE].
  64. [64]
    S. Sahu, S. Xu and B. Swingle, Scrambling dynamics across a thermalization-localization quantum phase transition, arXiv:1807.06086 [INSPIRE].
  65. [65]
    S. Grozdanov, K. Schalm and V. Scopelliti, Kinetic theory for classical and quantum many-body chaos, arXiv:1804.09182 [INSPIRE].
  66. [66]
    D. Stanford, Many-body chaos at weak coupling, JHEP 10 (2016) 009 [arXiv:1512.07687] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  67. [67]
    S. Cremonini, The shear viscosity to entropy ratio: a status report, Mod. Phys. Lett. B 25 (2011) 1867 [arXiv:1108.0677] [INSPIRE].
  68. [68]
    R.C. Myers, M.F. Paulos and A. Sinha, Holographic hydrodynamics with a chemical potential, JHEP 06 (2009) 006 [arXiv:0903.2834] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  69. [69]
    S. Cremonini, K. Hanaki, J.T. Liu and P. Szepietowski, Higher derivative effects on η/s at finite chemical potential, Phys. Rev. D 80 (2009) 025002 [arXiv:0903.3244] [INSPIRE].
  70. [70]
    S. Cremonini, J.T. Liu and P. Szepietowski, Higher derivative corrections to R-charged black holes: boundary counterterms and the mass-charge relation, JHEP 03 (2010) 042 [arXiv:0910.5159] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  71. [71]
    J. Erdmenger, I. Matthaiakakis, R. Meyer and D. Rodríguez Fernández, Strongly coupled electron fluids in the Poiseuille regime, Phys. Rev. B 98 (2018) 195143 [arXiv:1806.10635] [INSPIRE].
  72. [72]
    S. Waeber, A. Schäfer, A. Vuorinen and L.G. Yaffe, Finite coupling corrections to holographic predictions for hot QCD, JHEP 11 (2015) 087 [arXiv:1509.02983] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    S.A. Hartnoll, Theory of universal incoherent metallic transport, Nature Phys. 11 (2015) 54 [arXiv:1405.3651] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    M. Blake, Universal charge diffusion and the butterfly effect in holographic theories, Phys. Rev. Lett. 117 (2016) 091601 [arXiv:1603.08510] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations